OneSampleNormalGamma: Functions to Support the One Sample Continuous Scenario

Description Usage Arguments Examples

Description

make.ss.ng.ppp: Make One Sample Normal-Gamma Prior/Posterior Plot. Returns a ggplot object.

make.ss.ng.spp: Make One Sample Normal-Gamma Shaded Posterior Plot. Returns a graphic built using grid.arrange.

get.ss.ng.trt.oc.df: Get One Sample Normal-Gamma Treatment Effect OC. Returns a data.frame.

make.ss.ng.trt.oc1: Make One Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.

make.ss.ng.trt.oc2: Make One Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.

get.ss.ng.ssize.oc.df: Get One Sample Normal-Gamma sample size OC data.frame. Returns a data.frame.

make.ss.ng.ssize.oc: Make One Sample Normal-Gamma Sample size OC plot

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
make.ss.ng.ppp(
  mu.0.t = 0,
  n.0.t = 10,
  alpha.0.t = 0.25,
  beta.0.t = 1,
  xbar.t = 1.75,
  s.t = 2,
  n.t = 50
)

make.ss.ng.spp(
  mu.0.t = 0,
  alpha.0.t = 0.25,
  beta.0.t = 1,
  n.0.t = 10,
  xbar.t = 1.97,
  s.t = 2,
  n.t = 20,
  Delta.lrv = 1.25,
  Delta.tv = 1.75,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65,
  tsize = 4,
  nlines = 25,
  nlines.ria = 20
)

get.ss.ng.df(
  mu.0.t = 0,
  n.0.t = 10,
  alpha.0.t = 0.25,
  beta.0.t = 1,
  xbar.t = seq(-1, 5, 0.1),
  s.t = seq(1, 6, 0.1),
  n.t = 50,
  Delta.tv = 1.75,
  Delta.lrv = 1.5,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65
)

get.ss.ng.trt.oc.df(
  mu.0.t = 0,
  n.0.t = 10,
  alpha.0.t = 0.25,
  beta.0.t = 1,
  s.t = 2,
  n.t = 40,
  from.here = 0,
  to.here = 4,
  Delta.tv = 1.75,
  Delta.lrv = 1,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65
)

make.ss.ng.trt.oc1(my.df = get.ss.ng.trt.oc.df(), nlines = 25, tsize = 4)

make.ss.ng.trt.oc2(my.df = get.ss.ng.trt.oc.df(), nlines = 25, tsize = 4)

get.ss.ng.ssize.oc.df(
  mu.0.t = 3,
  n.0.t = 10,
  alpha.0.t = 0.25,
  beta.0.t = 1,
  s.t = 5,
  n.t = 50,
  n_LB_OC = floor(50 * 0.75),
  n_UB_OC = floor(50 * 2),
  npoints = 15,
  Delta.lrv = 2.5,
  Delta.tv = 4,
  Delta.user = 3,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65
)

make.ss.ng.ssize.oc(for.plot = get.ss.ng.ssize.oc.df(), nlines = 25, tsize = 4)

Arguments

mu.0.t

prior mean

n.0.t

prior effective sample size

alpha.0.t

prior alpha parameter

beta.0.t

prior beta parameter

xbar.t

observed sample mean

s.t

observed sample standard deviation

n.t

sample size

Delta.lrv

TPP Lower Reference Value aka Min TPP

Delta.tv

TPP Target Value aka Base TPP

tau.tv

threshold associated with Base TPP

tau.lrv

threshold associated with Min TPP

tau.ng

threshold associated with No-Go

tsize

Control for text size

nlines

Control for text spacing

nlines.ria

Control for text spacing

from.here

Lower bound for treatment effect

to.here

Upper bound for treatment effect

my.df

data.frame returned by get.ss.ng.trt.oc.df

n_LB_OC

Lower bound for sample size

n_UB_OC

Upper bound for sample size

npoints

Number of points to use in plot

seed

random seed

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

lylyf1987/GNGpkg documentation built on May 19, 2020, 12:07 a.m.