Description Usage Arguments Examples
make.ss.ng.ppp: Make One Sample Normal-Gamma Prior/Posterior Plot. Returns a ggplot object.
make.ss.ng.spp: Make One Sample Normal-Gamma Shaded Posterior Plot. Returns a graphic built using grid.arrange.
get.ss.ng.trt.oc.df: Get One Sample Normal-Gamma Treatment Effect OC. Returns a data.frame.
make.ss.ng.trt.oc1: Make One Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.
make.ss.ng.trt.oc2: Make One Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.
get.ss.ng.ssize.oc.df: Get One Sample Normal-Gamma sample size OC data.frame. Returns a data.frame.
make.ss.ng.ssize.oc: Make One Sample Normal-Gamma Sample size OC plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | make.ss.ng.ppp(
mu.0.t = 0,
n.0.t = 10,
alpha.0.t = 0.25,
beta.0.t = 1,
xbar.t = 1.75,
s.t = 2,
n.t = 50
)
make.ss.ng.spp(
mu.0.t = 0,
alpha.0.t = 0.25,
beta.0.t = 1,
n.0.t = 10,
xbar.t = 1.97,
s.t = 2,
n.t = 20,
Delta.lrv = 1.25,
Delta.tv = 1.75,
tau.tv = 0.1,
tau.lrv = 0.8,
tau.ng = 0.65,
tsize = 4,
nlines = 25,
nlines.ria = 20
)
get.ss.ng.df(
mu.0.t = 0,
n.0.t = 10,
alpha.0.t = 0.25,
beta.0.t = 1,
xbar.t = seq(-1, 5, 0.1),
s.t = seq(1, 6, 0.1),
n.t = 50,
Delta.tv = 1.75,
Delta.lrv = 1.5,
tau.tv = 0.1,
tau.lrv = 0.8,
tau.ng = 0.65
)
get.ss.ng.trt.oc.df(
mu.0.t = 0,
n.0.t = 10,
alpha.0.t = 0.25,
beta.0.t = 1,
s.t = 2,
n.t = 40,
from.here = 0,
to.here = 4,
Delta.tv = 1.75,
Delta.lrv = 1,
tau.tv = 0.1,
tau.lrv = 0.8,
tau.ng = 0.65
)
make.ss.ng.trt.oc1(my.df = get.ss.ng.trt.oc.df(), nlines = 25, tsize = 4)
make.ss.ng.trt.oc2(my.df = get.ss.ng.trt.oc.df(), nlines = 25, tsize = 4)
get.ss.ng.ssize.oc.df(
mu.0.t = 3,
n.0.t = 10,
alpha.0.t = 0.25,
beta.0.t = 1,
s.t = 5,
n.t = 50,
n_LB_OC = floor(50 * 0.75),
n_UB_OC = floor(50 * 2),
npoints = 15,
Delta.lrv = 2.5,
Delta.tv = 4,
Delta.user = 3,
tau.tv = 0.1,
tau.lrv = 0.8,
tau.ng = 0.65
)
make.ss.ng.ssize.oc(for.plot = get.ss.ng.ssize.oc.df(), nlines = 25, tsize = 4)
|
mu.0.t |
prior mean |
n.0.t |
prior effective sample size |
alpha.0.t |
prior alpha parameter |
beta.0.t |
prior beta parameter |
xbar.t |
observed sample mean |
s.t |
observed sample standard deviation |
n.t |
sample size |
Delta.lrv |
TPP Lower Reference Value aka Min TPP |
Delta.tv |
TPP Target Value aka Base TPP |
tau.tv |
threshold associated with Base TPP |
tau.lrv |
threshold associated with Min TPP |
tau.ng |
threshold associated with No-Go |
tsize |
Control for text size |
nlines |
Control for text spacing |
nlines.ria |
Control for text spacing |
from.here |
Lower bound for treatment effect |
to.here |
Upper bound for treatment effect |
my.df |
data.frame returned by get.ss.ng.trt.oc.df |
n_LB_OC |
Lower bound for sample size |
n_UB_OC |
Upper bound for sample size |
npoints |
Number of points to use in plot |
seed |
random seed |
1 2 3 4 5 6 7 8 9 10 | ## Not run:
make.ss.ng.ppp()
make.ss.ng.spp()
get.ss.ng.trt.oc.df()
make.ss.ng.trt.oc1()
make.ss.ng.trt.oc2()
get.ss.ng.ssize.oc.df()
make.ss.ng.ssize.oc()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.