Description Usage Arguments Examples
make.ts.ng.ppp: Make Two Sample Normal-Gamma Prior/Posterior Plot. Returns a ggplot object.
make.ts.ng.spp: Make Two Sample Normal-Gamma Shaded Posterior Plot. Returns a graphic built using grid.arrange.
get.ts.ng.trt.oc.df: Get Two Sample Normal-Gamma Treatment Effect OC. Returns a data.frame.
make.ts.ng.trt.oc1: Make Two Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.
make.ts.ng.trt.oc2: Make Two Sample Normal-Gamma Treatment Effect. Returns a graphic built using grid.arrange.
get.ts.ng.ssize.oc.df: Get Two Sample Normal-Gamma sample size OC data.frame. Returns a data.frame.
make.ts.ng.ssize.oc: Make Two Sample Normal-Gamma Sample size OC plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | make.ts.ng.ppp(
mu.0.c = 0,
alpha.c = 0.25,
beta.c = 1,
n.0.c = 1,
mu.0.t = 0,
alpha.t = 0.25,
beta.t = 1,
n.0.t = 1,
xbar.c = 1.5,
s.c = 4,
n.c = 40,
xbar.t = 3,
s.t = 4,
n.t = 40
)
make.ts.ng.spp(
mu.0.c = 0,
alpha.c = 0.25,
beta.c = 1,
n.0.c = 1,
mu.0.t = 0,
alpha.t = 0.25,
beta.t = 1,
n.0.t = 1,
xbar.c = 1.5,
s.c = 4,
n.c = 40,
xbar.t = 26,
s.t = 4,
n.t = 40,
Delta.lrv = 1,
Delta.tv = 1.5,
tau.ng = 0.65,
tau.lrv = 0.8,
tau.tv = 0.1,
seed = 1234,
n.MC = 1000,
nlines = 25,
nlines.ria = 20,
tsize = 4
)
get.ts.ng.mc.df(
mu.0.c = 0,
n.0.c = 10,
alpha.0.c = 0.25 * 4,
beta.0.c = 1 * 4,
xbar.c = seq(-3, 3, length.out = 20),
s.c = 3,
n.c = 25,
group.c = "Control",
mu.0.t = 0,
n.0.t = 10,
alpha.0.t = 0.25 * 4,
beta.0.t = 1 * 4,
xbar.t = seq(0, 6, length.out = 20),
s.t = 2,
n.t = 25,
group.t = "Treatment",
Delta.tv = 1.75,
Delta.lrv = 1.5,
tau.tv = 1,
tau.lrv = 1,
tau.ng = 0.65,
n.MC = 1000,
seed = 1234
)
get.ts.ng.mc(
mu.0.c = 1.5,
n.0.c = 1,
alpha.0.c = 0.25,
beta.0.c = 1,
xbar.c = 1.5,
s.c = 1,
n.c = 25,
group.c = "Control",
mu.0.t = 1.75,
n.0.t = 1,
alpha.0.t = 0.25,
beta.0.t = 1,
xbar.t = 0,
s.t = 1,
n.t = 25,
group.t = "Treatment",
Delta.tv = 1.5,
Delta.lrv = 1,
tau.tv = 1,
tau.lrv = 1,
tau.ng = 0.35,
seed = 1234,
n.MC = 5000
)
get.ts.ng.decision(
mu.0.c = 1.5,
n.0.c = 10,
alpha.0.c = 0.25 * 4,
beta.0.c = 1 * 4,
xbar.c = 1.5,
s.c = 1,
n.c = 25,
group.c = "Control",
mu.0.t = 1.75,
n.0.t = 10,
alpha.0.t = 0.25 * 4,
beta.0.t = 1 * 4,
xbar.t = 1.85,
s.t = 1,
n.t = 25,
group.t = "Treatment",
Delta.tv = 0.5,
Delta.lrv = 0.25,
tau.tv = 1,
tau.lrv = 1,
tau.ng = 0.35,
seed = 1234,
n.MC = 1000
)
get.ts.ng.trt.oc.df(
mu.0.c = 0,
n.0.c = 1,
alpha.0.c = 0.25,
beta.0.c = 1,
xbar.c = 1.5,
s.c = 2,
group.c = "Control",
mu.0.t = 3.75,
n.0.t = 1,
alpha.0.t = 0.25,
beta.0.t = 1,
xbar.t = 1.85,
s.t = 2,
group.t = "Treatment",
Delta.LB = 0,
Delta.UB = 5,
ARatio = 1,
N = 50,
Delta.tv = 2.5,
Delta.lrv = 1.5,
Delta.user = 4,
tau.tv = 1,
tau.lrv = 1,
tau.ng = 0.65,
npoints = 5,
n.MC = 500,
seed = 1234
)
make.ts.ng.trt.oc1(for.plot = get.ts.ng.trt.oc.df(), nlines = 20, tsize = 4)
make.ts.ng.trt.oc2(for.plot = get.ts.ng.trt.oc.df(), nlines = 25, tsize = 4)
get.ts.ng.ssize.oc.df(
mu.0.c = 0,
n.0.c = 1,
alpha.0.c = 0.25,
beta.0.c = 1,
s.c = 2,
group.c = "Control",
mu.0.t = 3.75,
n.0.t = 1,
alpha.0.t = 0.25,
beta.0.t = 1,
s.t = 2,
group.t = "Treatment",
ARatio = 2,
N = 50,
n_LB_OC = floor(50 * 0.75),
n_UB_OC = floor(50 * 2),
Delta.tv = 2.5,
Delta.lrv = 1.5,
Delta.user = 4,
tau.tv = 0.1,
tau.lrv = 0.2,
tau.ng = 0.35,
npoints = 10,
n.MC = 500,
seed = 1234
)
make.ts.ng.ssize.oc(for.plot = get.ts.ng.ssize.oc.df(), tsize = 4, nlines = 25)
|
mu.0.c |
prior mean for control group |
n.0.c |
prior effective sample size for control group |
mu.0.t |
prior mean for treatment group |
n.0.t |
prior effective sample size for treatment group |
xbar.c |
observed sample mean for control group |
s.c |
observed sample standard deviation for control group |
n.c |
sample size for control group |
xbar.t |
observed sample mean for treatment group |
s.t |
observed sample standard deviation for treatment group |
n.t |
sample size for treatment group |
Delta.lrv |
TPP Lower Reference Value aka Min TPP |
Delta.tv |
TPP Target Value aka Base TPP |
tau.ng |
threshold associated with No-Go |
tau.lrv |
threshold associated with Min TPP |
tau.tv |
threshold associated with Base TPP |
seed |
random seed |
n.MC |
Number of MC samples |
nlines |
Control for text spacing |
nlines.ria |
Control for text spacing |
tsize |
Control for text size |
alpha.0.c |
prior alpha parameter for control group |
beta.0.c |
prior beta parameter for control group |
alpha.0.t |
prior alpha parameter for treatment group |
beta.0.t |
prior beta parameter for treatment group |
Delta.LB |
Lower bound for treatment effect |
Delta.UB |
Upper bound for treatment effect |
ARatio |
Allocation ratio |
npoints |
number of points |
n_LB_OC |
Lower bound for sample size |
n_UB_OC |
Upper bound for sample size |
1 2 3 4 5 6 7 8 9 10 | ## Not run:
make.ts.ng.ppp()
make.ts.ng.spp()
get.ts.ng.trt.oc.df()
make.ts.ng.trt.oc1()
make.ts.ng.trt.oc2()
get.ts.ng.ssize.oc.df()
make.ts.ng.ssize.oc()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.