TwoSampleTTE: Functions to Support the Two Sample Time to Event Scenario

Description Usage Arguments Examples

Description

make.tte.ppp: Make Two Sample Time to Event Prior/Posterior Plot. Returns a ggplot object.

make.tte.spp: Make Two Sample Time to Event Shaded Posterior Plot. Returns a graphic built using grid.arrange.

get.tte.trt.oc.df: Get Two Sample Time to Event Treatment Effect OC. Returns a data.frame.

make.tte.trt.oc1: Make Two Sample Time to Event Treatment Effect. Returns a graphic built using grid.arrange.

make.tte.trt.oc2: Make Two Sample Time to Event Treatment Effect. Returns a graphic built using grid.arrange.

get.tte.ssize.oc.df: Get Two Sample Time to Event sample size OC data.frame. Returns a data.frame.

make.tte.ssize.oc: Make Two Sample Time to Event Sample size OC plot

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
make.tte.ppp(
  m.con.prior = 10,
  m.trt.prior = 10,
  HR.prior = 0.8,
  ARatio = 1,
  HR.obs = 0.75,
  m.obs = 50
)

make.tte.spp(
  m.con.prior = 10,
  m.trt.prior = 10,
  HR.prior = 1.1,
  ARatio = 1,
  HR.obs = 0.89,
  m.obs = 50,
  HR.tv = 1.3,
  HR.lrv = 1.1,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65,
  tsize = 4,
  nlines = 25,
  nlines.ria = 20
)

get.tte.post.param(
  m.con.prior = 10,
  m.trt.prior = 10,
  HR.prior = 0.7,
  ARatio = 1,
  HR.obs = 0.8,
  m.obs = 50
)

get.tte.df(
  m.con.prior = 50,
  m.trt.prior = 50,
  HR.prior = 0.845,
  HR.obs = seq(0.3, 1, 0.01),
  m.obs = seq(10, 200, 5),
  ARatio = 0.5,
  HR.tv = 0.8,
  HR.lrv = 0.9,
  tau.tv = 0.1,
  tau.lrv = 0.2,
  tau.ng = 0.35
)

get.tte.trt.oc.df(
  m.con.prior = 10,
  m.trt.prior = 10,
  HR.prior = 0.8,
  ARatio = 0.5,
  m.obs = 50,
  HR.tv = 1.3,
  HR.lrv = 1.1,
  HR.lower = 0.3,
  HR.upper = 2,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65
)

make.tte.trt.oc1(plot.df = get.tte.trt.oc.df(), nlines = 25, tsize = 4)

make.tte.trt.oc2(plot.df = get.tte.trt.oc.df(), nlines = 25, tsize = 4)

get.tte.ssize.oc.df(
  m.con.prior = 10,
  m.trt.prior = 10,
  HR.prior = 0.75,
  ARatio = 1,
  m.obs = 50,
  m.lower = 40,
  m.upper = 120,
  HR.lrv = 1.1,
  HR.tv = 1.4,
  HR.user = 0.845,
  tau.tv = 0.1,
  tau.lrv = 0.8,
  tau.ng = 0.65
)

make.tte.ssize.oc(
  for.plot = get.tte.ssize.oc.df(HR.lrv = 1.1, HR.tv = 1.4),
  tsize = 4,
  nlines = 25
)

Arguments

m.con.prior

prior number of control events

m.trt.prior

prior number of treatment events

HR.prior

prior estimate for HR

ARatio

Allocation ratio

HR.obs

observed hazard ratio

m.obs

observed number of events

HR.tv

TPP Target Value aka Base TPP

HR.lrv

TPP Lower Reference Value aka Max TPP (large HRs lead to No-Go)

tau.tv

threshold associated with Base TPP

tau.lrv

threshold associated with Min TPP

tau.ng

threshold associated with No-Go

tsize

Control for text size

nlines

Control for text spacing

nlines.ria

Control for text spacing

for.plot

data.frame returned by get.ts.ng.trt.oc.df

seed

random seed

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

lylyf1987/GNGpkg documentation built on May 19, 2020, 12:07 a.m.