#' @title Quality Control - Wood
#'
#' @description Quality control wood data (e.g., from Wood_2.csv files) imported
#' using `read_otg_csv()` or `read_otg_csv_wrapper()`.
#'
#' @author Kevin See
#'
#' @param qc_df The survey data frame to be QC'd
#' @inheritParams check_na
#'
#' @import dplyr
#' @importFrom tidyr pivot_longer
#' @importFrom magrittr %>%
#' @export
#' @return a tibble with QC results
qc_wood = function(qc_df = NULL,
cols_to_check_nas = c("Length (m)",
"Diameter (m)",
"Wet?",
"Channel Forming?",
"Ballasted?")) {
# set otg_type
otg_type = "Wood_2.csv"
# Starting message
cat(paste("Starting QC on otg_type =", otg_type, "data. \n"))
# Initiate qc_tmp
qc_tmp = qc_tbl()
#####
# CHECK 1: Do the column names in qc_df match the expected column names for that otg_type?
check_col_names(qc_df = qc_df,
otg_type = otg_type)
#####
# CHECK 2: Are there NAs in these columns?
tmp = check_na(qc_df,
cols_to_check_nas)
if( !is.null(tmp) ) qc_tmp = rbind(qc_tmp, tmp)
#####
# CHECK 3: any strange values in the Wet?, Ballasted? or Channel Forming? columns?
cat("Checking for unusual values in the Wet, Ballasted, and Channel Forming columns. \n")
yes_no_qc = qc_df %>%
dplyr::select(path_nm, GlobalID,
`Wet?`,
`Channel Forming?`,
`Ballasted?`) %>%
tidyr::pivot_longer(cols = c(`Wet?`,
`Channel Forming?`,
`Ballasted?`)) %>%
dplyr::filter(!is.na(value),
!value %in% c("Yes", "No")) %>%
dplyr::mutate(error_message = paste0("Column ", name, " has an unusal value.")) %>%
dplyr::select(all_of(names(qc_tmp)))
if( nrow(yes_no_qc) == 0 ) cat("Values in Wet, Ballasted, and Channel Forming columns look good! \n")
if( nrow(yes_no_qc) > 0 ) {
cat( nrow(yes_no_qc), "values appear strange. Adding to QC results. \n")
qc_tmp = rbind(qc_tmp, yes_no_qc)
}
#####
# CHECK 4: Are length and diameter possibly mixed up?
cat("Checking to see whether length and diameter values are possibly reversed. \n")
len_diam_qc = qc_df %>%
dplyr::filter(`Length (m)` <= `Diameter (m)`) %>%
dplyr::mutate(error_message = "Length is less than or equal to the diameter of a piece of large wood") %>%
dplyr::select(all_of(names(qc_tmp)))
if( nrow(len_diam_qc) == 0 ) cat("Length and diameter values appear okay. \n")
if( nrow(len_diam_qc) > 0 ) {
cat("The length and diameter values for", nrow(len_diam_qc), "pieces of wood may be reversed. Adding to QC results. \n")
qc_tmp = rbind(qc_tmp, len_diam_qc)
}
#####
# CHECK 5: Are the number, length, or diameter values outside of expected values?
cat("Checking whether length and diameter fall within expected values? \n")
# set expected values
exp_values = tibble(name = c("Length (m)",
"Diameter (m)"),
min = c(0),
max = c(30,
3))
# do measured values fall outside of expected values
val_chk = qc_df %>%
dplyr::select(path_nm, GlobalID,
all_of(exp_values$name)) %>%
tidyr::pivot_longer(cols = -c(path_nm, GlobalID)) %>%
dplyr::left_join(exp_values) %>%
rowwise() %>%
# TRUE = good, FALSE = outside expected values
dplyr::mutate(in_range = dplyr::between(value,
min,
max)) %>%
dplyr::filter(!in_range) %>%
dplyr::mutate(error_message = paste0("The measurement ", name, " falls outside of the expected values between ", min, " and ", max)) %>%
dplyr::select(all_of(names(qc_tmp)))
if( nrow(val_chk) == 0 ) cat("All wood measurement values fall within expected values. \n")
if( nrow(val_chk) > 0 ) {
cat("Wood values found outside of expected values. Adding to QC results. \n")
qc_tmp = rbind(qc_tmp, val_chk)
}
# return qc results
return(qc_tmp)
} # end qc_jam()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.