#' @title Rollup Channel Unit Undercut Data
#'
#' @description Summarize individual undercut data (e.g., from `otg_type =` "Undercut_4.csv) at
#' the channel unit scale
#'
#' @author Mike Ackerman, Richie Carmichael, and Kevin See
#'
#' @param undercut_df data.frame of `otg_type =` "Undercut_4.csv" containing the individual
#' undercut data to be summarized (rolled up) to the channel unit scale
#' @param fix_nas if any of the length or width measurements for an individual undercut
#' is missing i.e., `NA`, would you like to fill them in? Default is `TRUE`, in which
#' case the `NA` values will be imputed using function `impute_missing_values()
#' @param impute_cols character vector of column names that should be imputed, if `fix_nas == TRUE`
#' @param ... other arguments to `impute_missing_values()`
#'
#' @import dplyr
#' @export
#' @return a data.frame summarizing undercut data at the channel unit scale
rollup_cu_undercut = function(undercut_df = NULL,
fix_nas = TRUE,
impute_cols = c("length_m",
"width_25_percent_m",
"width_50_percent_m",
"width_75_percent_m"),
...) {
stopifnot(!is.null(undercut_df))
# how many missing values in individual undercuts
n_nas = undercut_df %>%
dplyr::select(dplyr::any_of(impute_cols)) %>%
is.na() %>%
sum()
if( fix_nas == TRUE & n_nas == 0 ) cat("No missing values in impute_cols of undercut_df\n")
# fix missing values in individual undercuts
if( fix_nas == TRUE & n_nas > 0) {
cat("Imputing some missing values in undercut_df\n")
fix_df = impute_missing_values(undercut_df,
col_nm_vec = impute_cols,
...)
undercut_df = fix_df
} # end if( fix_nas == TRUE & n_nas > 0 ) loop
# now start data rollup
return_df = undercut_df %>%
dplyr::select(-(creation_date:editor)) %>%
dplyr::mutate(avg_width_m = (width_25_percent_m + width_50_percent_m + width_75_percent_m) / 3) %>%
dplyr::mutate(area_m2 = length_m * avg_width_m) %>%
dplyr::group_by(parent_global_id) %>%
dplyr::summarise(undct_n = length(parent_global_id),
undct_n_left = length(parent_global_id[location == "Left_Bank"]),
undct_n_right = length(parent_global_id[location == "Right_Bank"]),
undct_n_islnd = length(parent_global_id[location == "Island"]),
undct_length_m = sum(length_m),
undct_area_m2 = sum(area_m2)) %>%
dplyr::mutate(undct_length_m = round(undct_length_m, 2)) %>%
dplyr::mutate(undct_area_m2 = round(undct_area_m2, 2))
return(return_df)
} # end rollup_cu_undercut() function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.