#' Negative Binomial family
#'
#' This is part of the new implementation.
#'
#' @param count.link link function for the count component
#' @export
NegativeBinomial <- function(count.link="log") {
count.link <- make.link(count.link)
list(
family = "Negative Binomial",
count.link = count.link,
# Log likelihood
loglikfun = function(parms, X, Y, Z=NULL, offsetx=0, offsetz=NULL, weights=1) {
kx <- ncol(X)
eta <- as.vector(X %*% parms[1:kx] + offsetx)
mu <- count.link$linkinv(eta)
theta <- exp(parms[kx + 1])
loglik <- sum(dnbinom(Y, size = theta, mu = mu, log = TRUE) * weights) #(Y * log(mu) - lfactorial(Y) + lgamma(theta + Y) - lgamma(theta) - Y * log(theta + mu) - theta * log(1 + mu/theta))
return(loglik)
},
# Gradient
gradfun = function(parms, X, Y, Z=NULL, offsetx=0, offsetz=NULL, weights=1) {
kx <- ncol(X)
eta <- as.vector(X %*% parms[1:kx] + offsetx)
mu <- count.link$linkinv(eta)
mu.d <- count.link$mu.eta(eta)
theta <- exp(parms[kx + 1])
grad.count = (Y / mu - (Y + theta) / (mu + theta)) * mu.d
grad.theta = (digamma(theta + Y) - digamma(theta) - log(1 + mu / theta) + (mu - Y) / (mu + theta)) * theta
grad <- colSums(cbind(grad.count * weights * X, grad.theta))
return(grad)
},
startfun = function(X, Y, Z, offsetx, offsetz, weights) start_1(X, Y, Z, offsetx, offsetz, weights, FALSE, TRUE),
zero.inflated = FALSE,
over.dispersed = TRUE
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.