#' Zero-Inflated Negative Binomial family
#'
#' This is part of the new implementation.
#'
#' @param count.link link function for the count component
#' @param zero.link link function for the zero component
#' @export
ZINegativeBinomial <- function(count.link="log", zero.link="logit") {
count.link <- make.link(count.link)
zero.link <- make.link(zero.link)
list(
family = "Zero-Inflated Negative Binomial",
count.link = count.link,
zero.link = zero.link,
# Log likelihood
loglikfun = function(parms, X, Y, Z, offsetx=0, offsetz=0, weights=1) {
Y1 <- Y > 0
kx <- ncol(X)
kz <- ncol(Z)
eta <- as.vector(X %*% parms[1:kx] + offsetx)
mu <- count.link$linkinv(eta)
etaz <- as.vector(Z %*% parms[(kx + 1):(kx + kz)] + offsetz)
phi <- zero.link$linkinv(etaz)
theta <- exp(parms[(kx + kz) + 1])
loglik.0 <- log(phi + (1 - phi) * dnbinom(0, size = theta, mu = mu))
loglik.1 <- log(1 - phi) + dnbinom(Y, size = theta, mu = mu, log = TRUE)
loglik <- sum(ifelse(Y1, loglik.1, loglik.0) * weights)
return(loglik)
},
# Gradient
gradfun = function(parms, X, Y, Z, offsetx=0, offsetz=0, weights=1) {
Y1 <- Y > 0
kx <- ncol(X)
kz <- ncol(Z)
eta <- as.vector(X %*% parms[1:kx] + offsetx)
mu <- count.link$linkinv(eta)
mu.d <- count.link$mu.eta(eta)
etaz <- as.vector(Z %*% parms[(kx + 1):(kx + kz)] + offsetz)
phi <- zero.link$linkinv(etaz)
phi.d <- zero.link$mu.eta(etaz)
theta <- exp(parms[(kx + kz) + 1])
count.0 <- dnbinom(0, size = theta, mu = mu)
likelihood.0 <- phi + (1 - phi) * count.0
grad.count.0 <- -(1 - phi) / (1 + mu / theta) * count.0 / likelihood.0 * mu.d
grad.count.1 <- (Y / mu - (Y + theta) / (mu + theta)) * mu.d
grad.count <- ifelse(Y1, grad.count.1, grad.count.0)
grad.zero.0 <- (1 - count.0)/ likelihood.0 * phi.d
grad.zero.1 <- -1/(1 - phi) * phi.d
grad.zero <- ifelse(Y1, grad.zero.1, grad.zero.0)
grad.theta.0 <- ((1 - phi) * (log(theta/(mu + theta)) + mu/(mu + theta)) * count.0 / likelihood.0) * theta
grad.theta.1 <- (digamma(theta + Y) - digamma(theta) - log(1 + mu / theta) + (mu - Y) / (mu + theta)) * theta
grad.theta <- ifelse(Y1, grad.theta.1, grad.theta.0)
grad <- colSums(cbind(grad.count * weights * X, grad.zero * weights * Z, grad.theta))
return(grad)
wres_theta <- theta * ifelse(Y1, digamma(Y + theta) -
digamma(theta) + log(theta) - log(mu + theta) + 1 -
(Y + theta)/(mu + theta), exp(-log(dens0) + log(1 -
muz) + clogdens0) * (log(theta) - log(mu + theta) +
1 - theta/(mu + theta)))
},
startfun = function(X, Y, Z, offsetx, offsetz, weights) start_1(X, Y, Z, offsetx, offsetz, weights, TRUE, TRUE),
zero.inflated = TRUE,
over.dispersed = TRUE
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.