## code to prepare `rra` dataset goes here
librarian::shelf('tidyverse', 'zoo', 'TTR', 'tsibble', 'targets', 'tarchetypes', 'lubridate', "moodymudskipper/safejoin",
'alistaire47/pipecleaner', 'glue', 'validate', 'fim', 'dplyover', 'tsibble', 'gt', 'readxl')
rra_raw <- read_xlsx('inst/extdata/pandemic_legislation.xlsx',
sheet = 'RRA')
devtools::load_all()
rra <-
rra_raw %>%
group_by(component) %>%
nest(data = c(category, name, total)) %>%
mutate(total = purrr::map_dbl(data, ~sum(.x$total)))
dates <- tibble(date = yearquarter('2021 Q1') + 0:12)
(rra <-
rra %>%
select(-data) %>%
pivot_wider(names_from = c(component, legislation), values_from = total) %>%
mutate(date = yearquarter('2021 Q1'), .before = everything()) %>%
as_tsibble(index = date) %>%
full_join(dates, by ='date') )
# MPCs --------------------------------------------------------------------
social_benefits_rra_timing <- mpc(timing = rep(1/4, 4))
snap_rra_timing <- mpc(timing = c(0.5, 0.5))
subsidies_rra_timing <- mpc(timing = rep(1/8, 8))
ppp_rra_timing <- mpc(timing = c(0.5, 0.5))
aviation_rra_timing <- mpc(timing = rep(1/3, 3))
employee_retention_credit_rra_timing <- mpc(timing = rep(1/4, 4))
federal_health_outlays_rra_timing <- mpc(timing = rep(1/12, 12))
consumption_grants_rra_timing <- mpc(timing = rep(1/12, 12))
federal_purchases_rra_timing <- mpc(timing = c(0.35, 0.35, 0.15, 0.15))
mpc_rra <- function(.data, var){
var <- rlang::as_name(var)
mpc_fun <- eval(sym(glue::glue('mpc_{var}')))
.data %>%
mutate(across(!!var, ~ mpc_fun(.x)))
}
rra <-
rra %>%
mutate(consumption_grants_rra = consumption_grants_rra_timing(consumption_grants_rra),
ppp_rra = ppp_rra_timing(ppp_rra),
aviation_rra = aviation_rra_timing(aviation_rra),
employee_retention_credit_rra = employee_retention_credit_rra_timing(employee_retention_credit_rra),
subsidies_rra = subsidies_rra_timing(subsidies_rra),
snap_rra = snap_rra_timing(snap_rra),
social_benefits_rra = social_benefits_rra_timing(social_benefits_rra)) %>%
mutate(federal_purchases_rra = federal_purchases_rra_timing(federal_purchases_rra),
federal_health_outlays_rra = federal_health_outlays_rra_timing(federal_health_outlays_rra)) %>%
mutate(across(where(is.numeric),
~ .x * 4),
across(where(is.numeric),
~ coalesce(.x, 0)))
rra <-
rra %>%
pivot_longer(-date) %>%
mutate(component = recode(name,
ppp_rra = 'subsidies_rra',
aviation_rra = 'subsidies_rra',
employee_retention_credit_rra = 'subsidies_rra',
subsidies_rra = 'subsidies_rra',
snap_rra = 'federal_social_benefits_rra',
social_benefits_rra = 'federal_social_benefits_rra',
rebate_checks_rra = 'rebate_checks_rra',
federal_ui_rra = 'federal_ui_rra',
consumption_grants_rra = 'consumption_grants_rra',
federal_purchases_rra = 'federal_purchases_rra',
federal_health_outlays_rra = 'federal_health_outlays_rra')) %>%
group_by(component) %>%
nest(data = c(name, value)) %>%
mutate(total = purrr::map_dbl(data, ~sum(.x$value))) %>%
select(-data) %>%
pivot_wider(date, names_from = component, values_from = total)
usethis::use_data(rra, overwrite = TRUE)
rra$data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.