examples-scripts/example_configmodel_generator.R

library("muxViz")
library(reshape2)
library(RColorBrewer)

#Or build by specifying layers
Layers <- 5
Nodes <- 100
NodeTensor <- list()
NodeTensor.cmI <- list()
NodeTensor.cmII <- list()
g.list <- list()

#Create 5 correlated layers
g.list[[1]] <- igraph::barabasi.game(Nodes, m = 1, directed = F)

#generate a second layer, with 25% edge overlap, while preserving degree distribution
g.list[[2]] <-
  GetRewiredLayerWithOverlappingEdges(g.list[[1]], 0.25, tol = 1e-2)

#generate a third layer, with 50% edge overlap, while preserving degree distribution
g.list[[3]] <-
  GetRewiredLayerWithOverlappingEdges(g.list[[1]], 0.50, tol = 1e-2)

#generate a fourth layer, with 75% edge overlap, while preserving degree distribution
g.list[[4]] <-
  GetRewiredLayerWithOverlappingEdges(g.list[[1]], 0.75, tol = 1e-2)

#generate a fifth layer, with 95% edge overlap, while preserving degree distribution
g.list[[5]] <-
  GetRewiredLayerWithOverlappingEdges(g.list[[1]], 0.95, tol = 1e-2)


#Uncomment the loop below to try another multiplex setup and see how results change
# for(l in 1:Layers){
#     g.list[[l]] <- erdos.renyi.game(Nodes, p=1.5*log(Nodes)/Nodes, directed=F)
# }


#Create configuration model of type I (wash out intra-layer correlations, keep inter-layer ones)
g.list.cmI <-
  GetConfigurationModelTypeIFromNetworkList(g.list,
                                            isDirected = NULL,
                                            method = "vl",
                                            verbose = F)

#Create configuration model of type II (wash out both intra-/inter-layer correlations)
g.list.cmII <-
  GetConfigurationModelTypeIIFromNetworkList(g.list,
                                             isDirected = NULL,
                                             method = "vl",
                                             verbose = F)



#Define the layers by their adjacency matrices
for (l in 1:Layers) {
  NodeTensor[[l]] <- igraph::get.adjacency(g.list[[l]])
  NodeTensor.cmI[[l]] <- igraph::get.adjacency(g.list.cmI[[l]])
  NodeTensor.cmII[[l]] <- igraph::get.adjacency(g.list.cmII[[l]])
}

#Define how layers are interconnected in all networks
LayerTensor <- Matrix::Matrix(1, Layers, Layers) - muxViz:::speye(Layers)
#Remind that the above one is a lower-level version of this one:
#LayerTensor <- BuildLayersTensor(Layers=Layers, OmegaParameter=1, MultisliceType="Categorical")

#Build the multilayer adjacency tensors
M <-
  BuildSupraAdjacencyMatrixFromEdgeColoredMatrices(NodeTensor, LayerTensor, Layers, Nodes)
M.cmI <-
  BuildSupraAdjacencyMatrixFromEdgeColoredMatrices(NodeTensor.cmI, LayerTensor, Layers, Nodes)
M.cmII <-
  BuildSupraAdjacencyMatrixFromEdgeColoredMatrices(NodeTensor.cmII, LayerTensor, Layers, Nodes)


#Let's verify that correlations change as expected

cat("Intra-layer assortative mixing\n")
cat("==============================\n")
cat("           Orig.   CM-I   CM-II\n")
for (l in 1:Layers) {
  cat(paste(
    "Layer",
    l,
    ":",
    round(assortativity(g.list[[l]], degree(g.list[[l]]), NULL), 3),
    round(assortativity(g.list.cmI[[l]], degree(g.list.cmI[[l]]), NULL), 3),
    round(assortativity(
      g.list.cmII[[l]], degree(g.list.cmII[[l]]), NULL
    ), 3),
    "\n"
  ))
}

cat("\n")
cat("Inter-layer assortative mixing\n")
cat("==============================\n")
cat("          Orig. CM-I CM-II\n")
for (l in 1:(Layers - 1)) {
  for (l2 in (l + 1):Layers) {
    cat(paste(
      "Layers",
      l,
      l2,
      ":",
      round(cor(
        degree(g.list[[l]]), degree(g.list[[l2]]), method = "pearson"
      ), 3),
      round(cor(
        degree(g.list.cmI[[l]]), degree(g.list.cmI[[l2]]), method = "pearson"
      ), 3),
      round(cor(
        degree(g.list.cmII[[l]]), degree(g.list.cmII[[l2]]), method = "pearson"
      ), 3),
      "\n"
    ))
  }
}
cat(
  "Note that Orig. and CM-I should be the same (1, when using the BA example), while CM-2 can be anything in [-1,1]\n"
)


#Estimate correlations now, let's use Spearman rho
LL.cor <-
  GetInterAssortativityTensor(M, Layers, Nodes, F, "TT")$InterSpearman
LL.cor.df <- melt(as.matrix(LL.cor))
LL.cor.df$type <- "Original"

LL.cor.cmI <-
  GetInterAssortativityTensor(M.cmI, Layers, Nodes, F, "TT")$InterSpearman
LL.cor.cmI.df <- melt(as.matrix(LL.cor.cmI))
LL.cor.cmI.df$type <- "CM Type I"

LL.cor.cmII <-
  GetInterAssortativityTensor(M.cmII, Layers, Nodes, F, "TT")$InterSpearman
LL.cor.cmII.df <- melt(as.matrix(LL.cor.cmII))
LL.cor.cmII.df$type <- "CM Type II"

#Assemble the results
LL.corrs.df <- rbind(LL.cor.df, LL.cor.cmI.df, LL.cor.cmII.df)

p <-
  ggplot(LL.corrs.df, aes(Var1, Var2, fill = value, group = type)) + theme_bw() +
  theme(panel.grid = element_blank()) + xlab("") + ylab("") +
  scale_fill_gradientn(name = "Correlation", colors = brewer.pal(9, "YlOrRd")) +
  geom_tile() +
  facet_wrap(. ~ type, ncol = 3)

png(
  "mux_configmodels.png",
  width = 1024 * 1.5,
  height = 1024 * 0.5,
  res = 120
)
print(p)
dev.off()
manlius/muxViz documentation built on March 1, 2023, 10:28 a.m.