#' Area of forest change
#'
#' Calculates the changes in forest area based on a \code{rasterObject} forest
#' mask and a \code{SpatialPolygonsDataFrame} containing areas of interest.
#'
#' @param inputForestMap A \code{RasterLayer} object with forest cover represented
#' in binary (e.g 0 represents no forest; 1 represents forest). Each layer is
#' expected to represent one year in the \code{years} object in a consecutive order.
#' @param studysite An object of type \code{sf} with a given
#' number of polygons defining the areas of interest. Forest area statistics
#' will be calculated for features in the \code{studysite} object.
#' @param ncores The number of cores to use, i.e. at most how many child
#' processes will be run simultaneously.
#' @param latlon \code{logical}: Indicates whether or not the
#' \code{inputForestMap} object is based on a geographic coordinate system
#' or is projected to a planar coordinate system. In the former case,
#' area is approximated by \code{\link[raster:area]{raster::area}}.
#' @param polyName \code{charachter} of length 1. Indicates the column in the
#' data frame of the \code{studysite} object to uniquely identify the features
#' of interest. The function will fail if there is no unique identification of
#' the polygons
#' @param saveCSV Default is \code{FALSE}. You can specify a directory on your
#' local machine where the results area saved in \code{.csv} format. The
#' features will be identified by the column specified in \code{polyName}.
#' @param years A vector of type \code{numeric} indicating the years which
#' are represented by pixels. For GFW data and the default these are 2001 to 2018.
#'
#' @return The \code{studysite} object with its data frame appended columnwise
#' for every single entry in the \code{years} object representing the total area
#' of forest in a given layer of the \code{inputForestMap} object.
#' If \code{latlon=TRUE} the returned area is in \emph{km²}, otherwise in the
#' squared unit of the input projection (most commonly in meters).
#'
#' @note This function relies heavily on parallization, indicating the
#' importance of both, a high number of CPUs and large enough RAM.
#' @author Darius Görgen (MapTailor Geospatial Consulting GbR) \email{info@maptailor.net}
#' \cr
#' \emph{Maintainer:} MAPME-Initiative \email{contact@mapme-initiative.org}
#' \cr
#' \emph{Contact Person:} Dr. Johannes Schielein
#' \cr
#' \emph{Copyright:} MAPME-Initiative
#' \cr
#' \emph{License:} GPL-3
#'
#' @export AreaCalc
#' @import raster
#' @import sf
#' @importFrom tibble rownames_to_column
#' @importFrom dplyr left_join
#' @importFrom parallel mclapply
#' @importFrom utils write.csv
#'
#' @examples
#' library(sf)
#' library(raster)
#' library(mapme.forest)
#'
#' aoi = st_read(system.file("extdata", "aoi_polys.gpkg", package = "mapme.forest"))
#' yearlyRaster = stack(system.file("extdata", "pkgTest_yearlyCover.tif",
#' package = "mapme.forest"))
#' result = AreaCalc(inputForestMap = yearlyRaster,
#' studysite = aoi[1,],
#' latlon = TRUE,
#' polyName = "id",
#' ncores = 1,
#' saveCSV = FALSE,
#' years = 2000:2018)
#' str(result)
#'
AreaCalc <- function (inputForestMap=NULL,
studysite=NULL,
latlon=NULL,
polyName=NULL,
ncores=1,
saveCSV=FALSE,
years = 2001:2018) {
#--------------------------- CHECK FOR ERROS IN INPUT -----------------------#
if (!class(inputForestMap)[1] %in% c("RasterLayer", "RasterStack", "RasterBrick")){
stop(paste0("No valid raster object specified in 'inputForestMap'.\n","Must be of class 'RasterLayer','RasterStack'or 'RasterBrick').\n","See ?AreaCalc for details."))
}
if (nlayers(inputForestMap) == 0){
stop(paste0("A raster object with 0 layers was specified.\n","At least one layer with a forest mask needs to be present.\n","See ?AreaCalc for details."))
}
if(nlayers(inputForestMap) != length(years)){
stop(paste0("Number of layers in inputForestMap and length of years differ. \n","Make sure that for each year you specify a layer is present in inputForestMap."))
}
if (class(studysite)[1] != "sf"){
stop(paste0("No valid spatial object specified in 'studysite'.\n", "Must be of class 'sf'.", "See ?AreaCalc for details."))
}
if (nrow(studysite) == 0){
stop(paste0("A spatial object with 0 features was specified.\n", "At least one feature needs to be present.\n", "See ?AreaCalc for details."))
}
if (!polyName %in% names(studysite)){
stop(paste0("There is no column named ", polyName," in the aoi object. Please check your \n", "input for polyName."))
}
if (length(studysite[[polyName]]) != length(unique(studysite[[polyName]]))){
stop(paste0("Names for the spatial features in specified column are not unique.\n", "Specify a column name in the 'polyName' object which has unique values for each feature.\n", "See ?AreaCalc for details."))
}
if (!latlon %in% c(TRUE, FALSE)){
stop(paste0("No valid input for 'latlon' found.\n", "Choose 'TRUE' when 'inputForestMap' are in geographic coordinates, 'FALSE' otherwise.\n", "See ?AreaCalc for details."))
}
if (st_crs(studysite) != st_crs(inputForestMap)){
stop(paste0("The CRS of the 'studysite' and 'inputForestMap' objects are not identical.\n", "Reproject either of these to the CRS of the other (Preferebly reproject 'studysite')."))
}
if(saveCSV != FALSE){
if(!file.exists(saveCSV)){
stop(paste0("The directory you specified does not exist.\n", "Specify a exisiting directory for .csv output.\n","See ?AreaCalc for details."))
}
}
#----------------------------- DATA PREPARATION -----------------------------#
# splitting studysite object to list for parallel processing
studysiteList = lapply(1:nrow(studysite), function(i){
return(studysite[i, ])
})
if (ncores == 1){ # sequential mode
areaStats = lapply(studysiteList, function(feature){
area_stats_seq(studysite = feature,
inputForestMap = inputForestMap,
latlon=latlon)
})
} else { # parallel mode
areaStats = mclapply(studysiteList, function(feature){
area_stats_seq(studysite = feature,
inputForestMap = inputForestMap,
latlon=latlon)
}, mc.cores = ncores)
}
#-------------------------------- PREPARING OUTPUT --------------------------#
# prepare result data
areaStats = as.data.frame(do.call("rbind", areaStats))
colnames(areaStats) = paste0("area_",years)
areaStats[,polyName] = st_drop_geometry(studysite)[ ,polyName]
# Save the results if specified by user
if (saveCSV != FALSE){
write.csv(areaStats, file=paste0(saveCSV,"/AreaStatistics.csv"), row.names = FALSE)
}
studysite = suppressMessages(left_join(studysite, areaStats))
return(studysite)
}# end of function
#' Forest area calculation single mode (Helper Function)
#'
#' @param studysite An sf object
#' @param inputForestMap A raster object
#' @param latlon Logical indicating if raster is unprojected or not
#'
#' @return A dataframe with estimated areas
#' @export area_stats_seq
#' @keywords internal
#' @importFrom sf st_transform st_as_sfc st_bbox st_difference st_area
#' @importFrom raster projection crop area xres yres
#' @importFrom exactextractr exact_extract
#' @author Darius Görgen (MapTailor Geospatial Consulting GbR) \email{info@maptailor.net}
#' \cr
#' \emph{Maintainer:} MAPME-Initiative \email{contact@mapme-initiative.org}
#' \cr
#' \emph{Contact Person:} Dr. Johannes Schielein
#' \cr
#' \emph{Copyright:} MAPME-Initiative
#' \cr
#' \emph{License:} GPL-3
area_stats_seq <- function(studysite, inputForestMap, latlon){
studysite2 = st_transform(studysite, projection(inputForestMap))
# calculate bounding boxes for raster and shapefile
ratio = coverratio(inputForestMap, studysite2)
if(ratio > 10){ # threshold of 10 % of the area
treecover = crop(inputForestMap, studysite2)
} else{
treecover = inputForestMap
}
# Binary raster is multiplied by its cell resolution when 'latlon'=FALSE
# otherwise area is estimated by raster::area()
if(latlon){
# approximation of area in km2, see ?raster::area for details
rasterIn = treecover*area(treecover)
}else{
# uses projected raster units as inputs
rasterIn = treecover*(xres(treecover)[1]*yres(treecover)[1])
}
#---------------------------- ZONAL STATISTICS --------------------------#
stats <- exact_extract(rasterIn, studysite2, "sum")
rm(rasterIn, treecover, studysite2, studysite, inputForestMap, ratio); gc()
return(stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.