#' Prediction intervals for functional quantile regression
#'
#' Return point predictions and prediction intervals for functional
#' scalar-on-image quantile regression and outputs from FPCA.
#'
#' @param pred_interval rownames of \code{data_projected_name} used to fit the FPCA
#' @param col rownames of \code{data_projected_name} for which to get the FPCA scores
#' @param xlab_input text file with the smoothing projections for each statistical unit
#' @param ylab_input demographic data with the scalar outcome of interest
#'
#' @author Marco Palma, \email{M.Palma@@warwick.ac.uk}
#' @keywords FPCA
#'
#' @export
#' @importFrom data.table fread
#' @importFrom Matrix crossprod chol
#' @importFrom spam kronecker
predint_plot <- function(pred_interval,
col = c("#009E73", "gold3", "#D55E00"),
xlab_input = "Difference from chronological age",
ylab_input = "Subjects") {
data_forest_center <- pred_interval$data_forest_center
#col <- mycol[as.numeric(data_forest_center$Dx)]
excesspoints <- pred_interval$excesspoints
#pal <- c("#009E73", "gold3", "#D55E00")
ggplot(data_forest_center,
aes(y = id,
x = AgePredMed,
xmin = AgePredLower,
xmax = AgePredUpper,
colour = Dx))+
geom_point(cex = 0.5)+
scale_colour_manual(values = col) +
ggExtra::removeGridY() +
theme(axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.line.y = element_line(linetype = "blank"),
strip.text = element_text(size = 12))+
geom_errorbarh(height = 0.01) +
geom_vline(xintercept = 0, linetype = "dashed") +
theme(legend.position = "none",
strip.text.x = element_text(size = 12)) +
geom_point(data = excesspoints,
mapping = aes_string(x = "x",y = "id"),
inherit.aes = F, size = 1, shape = 18) +
facet_wrap(. ~ Dx, scales = "free_y", shrink = TRUE) +
xlab(xlab_input) +
ylab(ylab_input)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.