Description Usage Arguments Value See Also Examples
For a given set of AIC from models, the probability of each model relative to the rest of the models of the set is calculated using the following formula:
1 |
... |
a |
a list
with a matrix for each experiment condition. The matrix
contains the probabilities of each model (columns) for each protein/peptide
(rows).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | data('wormsPE')
wormsPE <- calculateIsotopeFraction(wormsPE, ratioAssay = 'ratio')
modelList1 <- modelTurnover(x = wormsPE[1:10],
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelList1 <- calculateAIC(modelList1, smallSampleSize = TRUE)
modelList2 <- modelTurnover(x = wormsPE[1:10],
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t) + b',
start = list(k = 0.02, b = 0),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelList2 <- calculateAIC(modelList2, smallSampleSize = TRUE)
modelProbabilities <- compareAIC(modelList1, modelList2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.