R/tradeoff_mod.R

Defines functions tradeoff_mod

Documented in tradeoff_mod

#' Spatial tradeoffs model
#' @description Master module that calls four major modules and associated 
#' helper functions, to create a single land use tradeoff scenario.  
#' @param prod_targ Production targets passed as list. See examples for format.
#' @param ybetas list of 2 rasters or 2 vectors providing yield modifications
#' @param cbetas Vector of constraints to apply to land use. See examples. 
#' @param ybeta_update 1 (default) or 0 - determines whether yield_mod_* is run.
#' @param input_key Country/location code indicating input data to load.  
#' @param ctype Specific multiplicative ("X") or additive ("+") constraints 
#' @param silent Silent or verbose mode (TRUE [default] or FALSE) 
#' @details Much of the detail of running the model, and examples that help to 
#' illustrate it, are in the examples for the individual model components, 
#' including checks for consistency between "D" and "R" versions.
#' @return Data.frame of impacts, and data.table referencing conversions.
#' @note The impacts module has to be fixed still to not double-count impacts 
#' resulting from multi-season cropping in converted pixels. 
#' @examples
#' # Some inputs 
#' load("data/cropnames.rda")
#' rc <- run_code(input_key = "ZA")  
#' 
#' # # dummy climate/irrigation modifiers
#' # dfact <- c(0.9, 1.2)
#' # ybetas <- lapply(1:2, function(x) {
#' #   m <- brick("external/ext_data/ZA-crop-areas.tif")
#' #   r <- m
#' #   r <- setValues(r, values = rnorm(n = ncell(r) * nlayers(r), mean = dfact[x], 
#' #                  sd = 0.05))
#' # nm_up(mask(r, m, maskvalue = 0), cropnames)
#' # })
#' 
#' ybetas <- list(1, 1)
# # production target list
#' prod_targ <- c("maize" = 4, "cassava" = 2, "ground" = 2, "cotton" = 2, 
#'                "soy" = 2, "pulse" = 2, "sunflower" = 2, "sugarcane" = 2, 
#'                "wheat" = 2)
#' 
#' # cbeta vector
#' cbetas <- c(0.5, 0.5, 0, 0)
#' names(cbetas) <- c("Ag", "C", "bd", "cost")
#' 
#' # Comparing the two versions
#' system.time(tdt <- tradeoff_mod(prod_targ, ybetas, cbetas))  # 2.5 seconds
#' 
#' CRSobj <- projection(raster("external/ext_data/ZA-carbon-priorities.tif"))
#' plot(dt_to_raster(tdt$conv, CRSobj = CRSobj) - tdr$conv)  # check maps
#' @export 
#input_key = "ZA"; input = "D"; ybeta_update = 1; exist_list = NULL; 

tradeoff_mod <- function(prod_targ, ybetas, cbetas, input_key = "ZA", 
                         ybeta_update = 1, exist_list = NULL, 
                         ctype = "+", silent = TRUE) {
  names(cbetas) <- c("Ag", "C", "bd", "cost")
  
  # set up 
  #rnm <- full_path(set_base_path(), paste0("external/data/", input_key, 
  #                                         "-mask.tif"))
  #ha <- res(raster(rnm))[1]^2 / 10000  # nasty, hard-coded
  ha <- spatial_meta(input_key)$ha
  rc <- run_code(input_key)  # creates a once off code for any outputs
  #il <- input_handler(input_key = input_key, ybetas = ybetas, input = input, code = rc)
  il <- input_handler(input_key = input_key, ybetas = ybetas, 
                      code = rc, ybeta_update = ybeta_update, 
                      exist_list = exist_list, silent = silent)
  
  # target module
  target <- targets_dt(prod_targ = prod_targ, currprod = il$currprod, 
                       potprod = il$pp_curr)

  # constraints module 
  c_prob <- constraints_dt(inlist = list("y_std" = il$y_std, "C" = il$carbon_p, 
                                         "bd" = il$cons_p, "cost" = il$cost_p), 
                           cbetas = cbetas, code = rc, 
                           cropnames = il$cropnames, ctype = ctype, 
                           silent = silent)
  
  # convert module
  converted <- convert_dt(conv_prob = c_prob, target = target, 
                          pot_yield = il$p_yield, cropnames = il$cropnames, 
                          base = il$mask, ha = ha, keep_index = FALSE)

  # impacts
  impacts <- impact_dt(conv = converted, 
                       carbon = il$carbon[, c("veg", "soil"), with = FALSE], 
                       pot_yield = il$p_yield, 
                       div_list = il[c("richness", "pas")],
                       cost = il$cost,
                       cropnames = il$cropnames, ha = ha)
  
  out <- list("conv" = converted, "impacts" = impacts, "inputs" = il, 
              "runcode" = rc)
}
marcusspiegel/agroEcoTradeoff documentation built on May 21, 2019, 11:44 a.m.