Group_specific_AUC_estimation: Area Under The Curve of Group-Specific Polynomial Marginal...

Description Usage Arguments Value See Also Examples

View source: R/Group_specific_AUC_estimation.R

Description

This function estimates the area under the curve of marginal dynamics modeled by group-structured polynomials or B-spline curves.

Usage

1
2
3
4
5
6
7
Group_specific_AUC_estimation(
  MEM_Pol_group,
  time,
  Groups = NULL,
  method = "trapezoid",
  Averaged = FALSE
)

Arguments

MEM_Pol_group

A list with similar structure than the output provided by the function MEM_Polynomial_Group_structure.

A list containing:

Model_estimation either the vector of the marginal parameter estimates (at least for the groups whose AUC is to estimate), or a list containing this vector labeled 'beta' among other arguments (see MEM_Polynomial_Group_structure for details about the parameter order).
Model_features a list of at least 2 elements:
1. Groups - a vector indicating the names of the groups whose fixed parameters are given.
2. Marginal.dyn.feature - a list summarizing the features of the marginal dynamics defined in the model:
  • dynamic.type - a character scalar indicating the chosen type of marginal dynamics. Options are 'polynomial' or 'spline'

  • intercept - a logical vector summarizing choices about global and group-specific intercepts (Number of groups + 1) elements whose elements are named as ('global.intercept','group.intercept1', ..., 'group.interceptG') if G Groups are defined in MEM_Pol_group. For each element of the vector, if TRUE, the considered intercept is considered as included in the model (see Examples).

    If dynamic.type is defined as 'polynomial':

  • polynomial.degree - an integer vector indicating the degree of polynomial functions, one value for each group.

    If dynamic.type is defined as 'spline':

  • spline.degree - an integer vector indicating the degree of B-spline curves, one for each group.

  • knots - a list of group-specific internal knots used to build B-spline basis (one numerical vector for each group) (see bs for more details).

  • df - a numerical vector of group-specific degrees of freedom used to build B-spline basis, (one for each group).

  • boundary.knots - a list of group-specific boundary knots used to build B-spline basis (one vector for each group) (see bs for more details).

time

a numerical vector of time points (x-axis coordinates) or a list of numerical vectors (with as much elements than the number of groups in Groups).

Groups

a vector indicating the names of the groups belonging to the set of groups involved in MEM_Pol_group for which we want to estimate the AUC (a subset or the entire set of groups involved in the model can be considered). If NULL (default), the AUC for all the groups involved the MEM is calculated.

method

a character scalar indicating the interpolation method to use to estimate the AUC. Options are 'trapezoid' (default), 'lagrange' and 'spline'. In this version, the 'spline' interpolation is implemented with the "not-a-knot" spline boundary conditions.

Averaged

a logical scalar. If TRUE, the function return the normalized AUC (nAUC) computed as the AUC divided by the range of the time calculation. If FALSE (default), the classic AUC is calculated.

Value

A numerical vector containing the estimation of the AUC (or nAUC) for each group defined in the Groups vector.

See Also

bs, MEM_Polynomial_Group_structure

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Download of data
data("HIV_Simu_Dataset_Delta01_cens")
data <- HIV_Simu_Dataset_Delta01_cens

# Change factors in character vectors
data$id <- as.character(data$id) ; data$Group <- as.character(data$Group)

# Example 1: We consider the variable 'MEM_Pol_Group' as the output of our function \link[DeltaAUCpckg]{MEM_Polynomial_Group_structure}
MEM_estimation <- MEM_Polynomial_Group_structure(y=data$VL,x=data$time,Group=data$Group,Id=data$id,Cens=data$cens)

# Estimation of the AUC for the two groups defined in the dataset
AUC_estimation <- AUC_estimation <- Group_specific_AUC_estimation(MEM_Pol_group=MEM_estimation,time=list(unique(data$time[which(data$Group == "Group1")]),unique(data$time[which(data$Group == "Group2")])),Groups=unique(data$Group))

Estimation of the AUC only for the group "Group1"
AUC_estimation_G1 <- Group_specific_AUC_estimation(MEM_Pol_group=MEM_estimation,time=unique(data$time[which(data$Group == "Group1")]),Groups=c("Group1"))

Example 2: We consider results of MEM estimation from another source. We have to give build the variable 'MEM_Pol_group' with the good structure
 # We build the variable 'MEM_Pol_group.1' with the results of MEM estimation obtained for two groups (even if only "Group1" is called in AUC estimation function)
MEM_Pol_group.1 <- list(Model_estimation=c(1.077,0.858,-0.061,0.0013,0.887,-0.066,0.0014), # c(global.intercept,beta1.G1,beta2.G1,beta2.G1,beta1.G2,beta2.G2,beta3.G2)
                        Model_features=list(Groups=c("Group1","Group2"),
                                            Marginal.dyn.feature=list(dynamic.type="polynomial",intercept=c(global.intercept=TRUE,group.intercept1=FALSE,group.intercept2=FALSE),polynomial.degree=c(3,3))))

 # We build the variable 'MEM_Pol_group.2' with the results of MEM estimation obtained only for the group of interest (extraction)
MEM_Pol_group.2 <- list(Model_estimation=c(1.077,0.858,-0.061,0.0013), # c(global.intercept,beta1.G1,beta2.G1,beta3.G1)
                        Model_features=list(Groups=c("Group1"),
                                            Marginal.dyn.feature=list(dynamic.type="polynomial",intercept=c(global.intercept=TRUE,group.intercept1=FALSE),polynomial.degree=c(3))))
                      
# Estimation of the AUC for the group "Group1"
AUC_estimation_G1.1 <- Group_specific_AUC_estimation(MEM_Pol_group=MEM_Pol_group.1,time=unique(data$time[which(data$Group == "Group1")]),Groups=c("Group1"))
AUC_estimation_G1.2 <- Group_specific_AUC_estimation(MEM_Pol_group=MEM_Pol_group.2,time=unique(data$time[which(data$Group == "Group1")]))

marie-alexandre/DeltaAUCpckg documentation built on Jan. 1, 2021, 8:31 a.m.