#' Calculates the statistics for the main effect of physical contact
#'
#' This is the description
#'
#' @param data data frame or tibble that contains Region and specified variables
#' @param vars the variables to be collapsed
#' @param label what data label should be attached to the output
#' @param rscale prior to be passed to the ttestBF function
#'
#' @return a tibble that contains the selected statistics
#' in a format that can be printed
#' @export
calculate_contact_stat <- function(data = NULL, vars = NULL, label = NULL, rscale) {
data %>%
tibble::as_tibble() %>%
dplyr::select(Region, {{vars}}) %>%
dplyr::group_by(Region) %>%
tidyr::nest() %>%
dplyr::arrange(Region) %>%
dplyr::mutate(data_long = purrr::map(data,
. %>%
tidyr::pivot_longer(
cols = everything(),
names_to = "condition",
values_to = "rate",
values_drop_na = TRUE) %>%
as.data.frame()),
bttest = purrr::map(data_long,
~BayesFactor::ttestBF(formula = rate ~ condition, data = .x,
rscale = rscale, nullInterval = c(0, Inf))),
hdi = purrr::map(data_long,
~ bayestestR::hdi(
BayesFactor::ttestBF(formula = rate ~ condition, data = .x, rscale = rscale),
c = 0.89)),
fttest = purrr::map(data_long,
~t.test(rate ~ condition, data = .x) %>%
broom::tidy())) %>%
dplyr::ungroup() %>%
dplyr::transmute(
Exclusion = label,
Cluster = Region,
BF = purrr::map_chr(bttest,
. %>%
tibble::as_tibble() %>%
slice(2) %>%
dplyr::pull(bf) %>%
scales::scientific()),
t = purrr::map_dbl(fttest,
~dplyr::pull(.x, statistic) %>%
round(2)),
df = purrr::map_dbl(fttest,
~dplyr::pull(.x, parameter) %>%
round(2)),
p = purrr::map_chr(fttest,
~dplyr::pull(.x, p.value) %>%
round(3)),
`Cohen's d` = purrr::map_dbl(data_long,
~abs(
effsize::cohen.d(rate ~ condition, data = .x)$estimate %>%
round(2))),
`Raw effect` = purrr::map_dbl(data_long,
. %>%
dplyr::group_by(condition) %>%
dplyr::summarise(avg_rate = mean(rate, na.rm = TRUE),
.groups = "drop") %>%
dplyr::mutate(condition = glue::glue("avg_{stringr::str_extract(condition, '[0-9]')}")) %>%
tidyr::pivot_wider(names_from = condition, values_from = avg_rate) %>%
dplyr::mutate(raw_effect = round(avg_4 - avg_1, 2)) %>%
dplyr::pull(raw_effect)),
CI = purrr::map_chr(hdi,
. %>%
as_tibble() %>%
mutate(CI = glue::glue("[{round(CI_low, 2)}, {round(CI_high, 2)}]")) %>%
pull(CI))
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.