#' Runs the statistical analysis for study2
#'
#' The function runs the statistical analysis for study2 a and b as
#' described in the manuscript.
#'
#' @param data data frame or tibble that contains Region and specified variables
#' @param vars the variables to be collapsed
#' @param label what data label should be attached to the output
#' @param rscaleFixed prior
#'
#' @return a tibble that contains the selected statistics
#' in a format that can be printed
#' @export
calculate_study2_stat <- function(data = NULL,
vars = NULL,
label = NULL,
rscaleFixed){
data %>%
tibble::as_tibble() %>%
dplyr::select(Region, {{vars}}) %>%
dplyr::group_by(Region) %>%
tidyr::nest() %>%
dplyr::arrange(Region) %>%
dplyr::mutate(data_long = purrr::map(data,
~tidyr::pivot_longer(.x,
cols = everything(),
names_to = "condition",
values_to = "rate",
values_drop_na = TRUE) %>%
dplyr::mutate(
personal_force = dplyr::if_else(stringr::str_detect(condition, "3|5"), 0, 1),
intention = dplyr::if_else(stringr::str_detect(condition, "4|5"), 1, 0),
personal_force2 = dplyr::if_else(stringr::str_detect(condition, "3|5"), -1, 1),
intention2 = dplyr::if_else(stringr::str_detect(condition, "4|5"), 1, -1),
personal_force = factor(personal_force),
intention = factor(intention))%>%
as.data.frame()),
bmod_1 = purrr::map(data_long,
~BayesFactor::lmBF(rate ~ personal_force * intention,
data = .x,
rscaleFixed = rscaleFixed)),
bmod_2 = purrr::map(data_long,
~BayesFactor::lmBF(rate ~ personal_force + intention,
data = .x)),
bmod = purrr::map2(bmod_1, bmod_2,
~BayesFactor::recompute(.x / .y, iterations = 50000) %>%
tibble::as_tibble()),
hdi = purrr::map(data_long,
~ bayestestR::hdi(
BayesFactor::lmBF(rate ~ personal_force * intention, data = .x, rscaleFixed = rscaleFixed),
c = 0.89)),
fmod = purrr::map(data_long,
~lm(rate ~ personal_force2 * intention2, data=.x) %>%
broom::tidy())) %>%
dplyr::ungroup() %>%
dplyr::transmute(
Exclusion = label,
Cluster = Region,
BF = purrr::map_chr(bmod,
~dplyr::slice(.x, 1) %>%
dplyr::pull(bf) %>%
scales::scientific()),
RR = NA_character_,
`b` = purrr::map_dbl(fmod,
~dplyr::filter(.x, term == "personal_force2:intention2") %>%
dplyr::pull(estimate) %>%
round(3)),
# df = purrr::map_chr(fmod,
# ~dplyr::filter(.x, term == "Residuals") %>%
# dplyr::pull(df) %>%
# paste0("1, ", .)),
CI = purrr::map_chr(hdi,
. %>%
tibble::as_tibble() %>%
dplyr::filter(Parameter == "personal_force:intention-1.&.1") %>%
dplyr::mutate(CI = glue::glue("[{round(CI_low, 2)}, {round(CI_high, 2)}]")) %>%
dplyr::pull(CI)),
p = purrr::map_chr(fmod,
~dplyr::filter(.x, term == "personal_force2:intention2") %>%
dplyr::pull(p.value) %>%
round(3)),
`Eta squared` = purrr::map_dbl(data_long,
~aov(rate ~ personal_force*intention, data = .x) %>%
effectsize::eta_squared() %>%
tibble::as_tibble() %>%
dplyr::filter(Parameter == "personal_force:intention") %>%
dplyr::pull(Eta2_partial) %>%
round(3)),
`Raw effect` = purrr::map_dbl(data_long,
~dplyr::group_by(.x, personal_force, intention) %>%
dplyr::summarise(avg_rate = mean(rate, na.rm = TRUE),
.groups = "drop") %>%
tidyr::pivot_wider(names_from = c(personal_force, intention),
values_from = avg_rate) %>%
dplyr::mutate(raw_diff = (`0_0`-`1_0`) - (`0_1` - `1_1`)) %>%
dplyr::pull(raw_diff) %>%
round(2))
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.