#' Evaluate results lm
#'
#' Run a Bayesian ANOVA and return the BF.
#'
#' @param df TODO
#' @param groups TODO
#' @param prior TODO
#' @param bf_thresholds TODO
#'
#' @return A tibble with the grouping variables, a calculated BF,
#' and the inference.
#' @export
get_lmbf_inference <- function(df,
groups = c("study", "class"),
prior = prior,
# Evidence for the alternative and null, respectively
bf_thresholds = c(10, 1/10)
){
suppressMessages(
df %>%
dplyr::group_nest(!!!syms(groups)) %>%
dplyr::transmute(!!!syms(groups),
bf = purrr::map_dbl(data,
~(BayesFactor::lmBF(formula = choice ~ personal_force * intention,
rscaleFixed = prior,
data = as.data.frame(.x),
progress = FALSE) /
BayesFactor::lmBF(formula = choice ~ personal_force + intention,
rscaleFixed = prior,
data = as.data.frame(.x),
progress = FALSE)) %>%
BayesFactor::extractBF(onlybf = TRUE)),
inference = dplyr::case_when(bf > bf_thresholds[1] ~ "replicated",
bf < bf_thresholds[2] ~ "not replicated",
TRUE ~ "inconclusive")
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.