library(MMRFVariant)
library(dplyr)
library(DT)
library(ggplot2)
library(stringr)
library(ggpubr)
library(survminer)
library(survival)
library(formattable)
#-----------dataset from MMRF-RG---------
#patient<-MMRF_CoMMpass_IA15_PER_PATIENT
#trt<-MMRF_CoMMpass_IA15_STAND_ALONE_TRTRESP
#variant.ann<-MMRF_CoMMpass_IA15a_All_Canonical_Variants
#--------Example-----------
#patient<-patient.example
#trt<-trt.example
#variant.ann<-variant.ann.example
#(GRCh37)
#hg19
# Analyze the topN recurrent variants in the complete samples cohort
## Heatmap of the N# of variants occurrence in the complete samples cohort
variants.plot.all<-MMRFVariant_PlotVariantsbyGene(variant.ann,height=10, width=20,topN=10,
filenm="PlotVariantsbyGene_heatmapAll")
## Get the list of variants found in the in the complete samples cohort ranked by the occurrence number
ListSNPs<-MMRFVariant_GetVariantsbyGene(variant.ann)
ListSNPs<-ListSNPs[order(ListSNPs$count, decreasing = TRUE),]
datatable(head(as.data.frame(ListSNPs),10),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
impact.table<-MMRFVariant_GetImpact(variant.ann,ListSNPs$dbSNP)
impact.table<-dplyr::select(impact.table,dbSNP,Gene,REF,ALT,feature,Effect,
SIFT_Impact,Polyphen_Impact,Impact)
## Perform the Impact-Effect plot
plot.impact.effect.all<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs$dbSNP,topN=3,height=20,
width=30, filenm="PlotbyEffectImpactAll")
# Prioritizing variants in a known Multiple Myeloma (MM) disease-causing gene set
# The six gene-signature including the genes KRAS, NRAS, TP53, FAM46C, DIS3, BRAF have a high recurrence rate and may play important roles in the pathogenesis, progression and prognosis of MM.
#This case study shows how MMRFVariant performs the integrative analysis of variants in that six gene-signature to prioritize pathogenic variants involved in the MM.
## Set the list of gene "ListGene" to explore
ListGene<-c("KRAS", "NRAS","TP53","FAM46C","DIS3","BRAF")
## Draw the Heatmap of the N# of variants occurring in "ListGene"
variants.plot<-MMRFVariant_PlotVariantsbyGene(variant.ann,ListGene,height=15,
width=20,topN=50,
filenm="PlotVariantsbyGene_heatmap")
## Get the list of Variants found in the gene set <ListGene>
ListSNPs<-MMRFVariant_GetVariantsbyGene(variant.ann, ListGene)
#head(ListSNPs,20)
## Plot the Impact-Effect of Variants
plot.impact.effect<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs$dbSNP,topN=50,height=30,
width=15, filenm="PlotbyEffectImpact")
## Perform the impact table (ordered by ascending SIFT and descending Poliphen-2)
impact.table<-MMRFVariant_GetImpact(variant.ann,ListSNPs$dbSNP)
#For semplification purposes, we visualize a subset of columns and rows
impact.table.sub<-dplyr::select(impact.table,dbSNP,Gene,REF,ALT,feature,Effect,
SIFT_Impact,Polyphen_Impact,Impact)
head(unique(impact.table.sub),10)
ListSNPs_NRAS<-MMRFVariant_GetVariantsbyGene(variant.ann,"NRAS")
datatable(as.data.frame(ListSNPs_NRAS),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
#We take into account only the top five SNPs by occurrence (see <KRAS_SNPs.tab>)
impact.table_NRAS<-MMRFVariant_GetImpact(variant.ann,ListSNPs_NRAS$dbSNP)
#For semplification purposes, we visualize a subset of columns and rows
impact.table_NRAS<-dplyr::select(impact.table_NRAS,dbSNP,Gene,REF,ALT,
feature,Effect,SIFT_Impact,Polyphen_Impact,Impact)
head(unique(impact.table_NRAS),10)
## Plot the Impact-Effect of SNPs in NRAS gene
plot.impact.effect_NRAS<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs_NRAS$dbSNP,topN=50,height=30,
width=15, filenm="PlotbyEffectImpact_NRAS")
## KM Survival curves in NRAS gene
#(!) SNPs in <ListSNPs_NRAS> are discarded if:
# a) only a group with respect to FilterBy parameter is found
#b) pvalue is>=0.05
NRAS_SNPs.treat<-c("rs11554290","rs121913254","rs121913237", "rs121913255")
NRAS_surv.treatment<-MMRFVariant_SurvivalKM(patient,
trt,
variant.ann,
NRAS_SNPs.treat,
FilterBy="Treatment",
filename="KM_Plot_NRAS_treatment",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
NRAS_surv.Effect<-MMRFVariant_SurvivalKM(patient, #no significant results are found (all pvalue>0.05)
trt,
variant.ann,
ListSNPs_NRAS,
FilterBy="Effect",
filename="KM_Plot_NRAS_effect",
xlim = c(100,100),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
# see (*)
NRAS_SNPs.stage<-c("rs121913254")
NRAS_surv.Stage<-MMRFVariant_SurvivalKM(patient,
trt,
variant.ann,
NRAS_SNPs.stage,
FilterBy="Stage",
filename="KM_Plot_NRAS_stage",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
# see (*)
NRAS_SNPs.bestresp<-c("rs11554290","rs121913254","rs121434595", "rs121913237")
NRAS_surv.Bestresp<-MMRFVariant_SurvivalKM(patient,
trt,
variant.ann,
NRAS_SNPs.bestresp,
FilterBy="Bestresp",
filename="KM_Plot_NRAS_bestresp",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
# see (*)
NRAS_surv.Gender<-MMRFVariant_SurvivalKM(patient, #All SNPs have pvalue<=0.05
trt,
variant.ann,
ListSNPs_NRAS,
FilterBy="Gender",
filename="KM_Plot_NRAS_gender",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
# see (*)
NRAS_surv.Biotype<-MMRFVariant_SurvivalKM(patient, #All SNPs have have only a group with respect to FilterBy parameter
trt,
variant.ann,
ListSNPs_NRAS,
FilterBy="Biotype",
filename="KM_Plot_NRAS_biotype",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
# see (*)
NRAS_SNPs.ethnicity<-c("rs11554290","rs121913254","rs121913237")
NRAS_surv.Ethnicity<-MMRFVariant_SurvivalKM(patient,
trt,
variant.ann,
NRAS_SNPs.ethnicity,
FilterBy="Ethnicity",
filename="KM_Plot_NRAS_ethnicity",
xlim = c(100,3000),
height=22,
width=12,
conf.range = FALSE,
color = c("Dark2"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.