#' Gradient boosted propensity score estimation
#'
#' \code{ps} calculates propensity scores using gradient boosted logistic
#' regression and diagnoses the resulting propensity scores using a variety of
#' methods
#'
#' For user more comfortable with the options of \code{\link{xgboost}},
#' the options for \code{ps} controlling the behavior of the gradient boosting
#' algorithm can be specified using the \code{\link{xgboost}} naming
#' scheme. This includes \code{nrounds}, \code{max_depth}, \code{eta}, and
#' \code{subsample}. In addition, the list of parameters passed to
#' \code{\link{xgboost}} can be specified with \code{params}.
#'
#' Note that unlike earlier versions of `twang`, the plotting functions are
#' no longer included in the \code{ps} function. See \code{\link[twang:plot.ps]{plot}} for
#' details of the plots.
#'
#' @param formula An object of class \code{\link{formula}}: a symbolic
#' description of the propensity score model to be fit with the treatment
#' indicator on the left side of the formula and the potential confounding
#' variables on the right side.
#' @param data A dataset that includes the treatment indicator as well as the
#' potential confounding variables.
#' @param n.trees Number of gbm iterations passed on to \code{\link{gbm}}. Default: 10000.
#' @param interaction.depth A positive integer denoting the tree depth used in
#' gradient boosting. Default: 3.
#' @param shrinkage A numeric value between 0 and 1 denoting the learning rate.
#' See \code{\link{gbm}} for more details. Default: 0.01.
#' @param bag.fraction A numeric value between 0 and 1 denoting the fraction of
#' the observations randomly selected in each iteration of the gradient
#' boosting algorithm to propose the next tree. See \code{\link{gbm}} for
#' more details. Default: 1.0.
#' @param n.minobsinnode An integer specifying the minimum number of observations
#' in the terminal nodes of the trees used in the gradient boosting. See \code{\link{gbm}} for
#' more details. Default: 10.
#' @param perm.test.iters A non-negative integer giving the number of iterations
#' of the permutation test for the KS statistic. If \code{perm.test.iters=0}
#' then the function returns an analytic approximation to the p-value. Setting
#' \code{perm.test.iters=200} will yield precision to within 3\% if the true
#' p-value is 0.05. Use \code{perm.test.iters=500} to be within 2\%. Default: 0.
#' @param print.level The amount of detail to print to the screen. Default: 2.
#' @param verbose If \code{TRUE}, lots of information will be printed to monitor the
#' the progress of the fitting. Default: \code{TRUE}.
#' @param estimand \code{"ATE"} (average treatment effect) or \code{"ATT"} (average treatment
#' effect on the treated) : the causal effect of interest. ATE estimates the
#' change in the outcome if the treatment were applied to the entire
#' population versus if the control were applied to the entire population. ATT
#' estimates the analogous effect, averaging only over the treated population.
#' Default: \code{"ATE"}.
#' @param stop.method A method or methods of measuring and summarizing balance across pretreatment
#' variables. Current options are \code{ks.mean}, \code{ks.max}, \code{es.mean}, and \code{es.max}. \code{ks} refers to the
#' Kolmogorov-Smirnov statistic and es refers to standardized effect size. These are summarized
#' across the pretreatment variables by either the maximum (\code{.max}) or the mean (\code{.mean}).
#' Default: \code{c("ks.mean", "es.mean")}.
#' @param sampw Optional sampling weights.
#' @param version \code{"gbm"}, \code{"xgboost"}, or \code{"legacy"}, indicating which version of the twang package to use.
#' \itemize{
#' \item{\code{"gbm"}}{ uses gradient boosting from the \code{\link{gbm}} package,}
#' \item{\code{"xgboost"}}{ uses gradient boosting from the \code{\link{xgboost}} package, and}
#' \item{\code{"legacy"}}{ uses the prior implementation of the \code{ps} function.}
#' }
#' Default: \code{"gbm"}.
#' @param ks.exact \code{NULL} or a logical indicating whether the
#' Kolmogorov-Smirnov p-value should be based on an approximation of exact
#' distribution from an unweighted two-sample Kolmogorov-Smirnov test. If
#' \code{NULL}, the approximation based on the exact distribution is computed
#' if the product of the effective sample sizes is less than 10,000.
#' Otherwise, an approximation based on the asymptotic distribution is used.
#' **Warning:** setting \code{ks.exact = TRUE} will add substantial
#' computation time for larger sample sizes. Default: \code{NULL}.
#' @param n.keep A numeric variable indicating the algorithm should only
#' consider every \code{n.keep}-th iteration of the propensity score model and
#' optimize balance over this set instead of all iterations. Default: 1.
#' @param n.grid A numeric variable that sets the grid size for an initial
#' search of the region most likely to minimize the \code{stop.method}. A
#' value of \code{n.grid=50} uses a 50 point grid from \code{1:n.trees}. It
#' finds the minimum, say at grid point 35. It then looks for the actual
#' minimum between grid points 34 and 36. If specified with \code{n.keep>1}, \code{n.grid}
#' corresponds to a grid of points on the kept iterations as defined by \code{n.keep}. Default: 25.
#' @param keep.data A logical variable indicating whether or not the data is saved in
#' the resulting \code{ps} object. Default: \code{TRUE}.
#' @param ... Additional arguments that are passed to \code{ps} function.
#'
#' @return Returns an object of class \code{ps}, a list containing
#' \itemize{
#' \item{\code{gbm.obj}}{ The returned \code{\link{gbm}} or \code{\link{xgboost}} object.}
#' \item{\code{treat}}{ The vector of treatment indicators.}
#' \item{\code{treat.var}}{ The treatment variable.}
#' \item{\code{desc}}{ A list containing balance tables for each method selected in
#' \code{stop.methods}. Includes a component for the unweighted
#' analysis names \dQuote{unw}. Each \code{desc} component includes
#' a list with the following components
#' \itemize{
#' \item{\code{ess}}{ The effective sample size of the control group.}
#' \item{\code{n.treat}}{ The number of subjects in the treatment group.}
#' \item{\code{n.ctrl}}{ The number of subjects in the control group.}
#' \item{\code{max.es}}{ The largest effect size across the covariates.}
#' \item{\code{mean.es}}{ The mean absolute effect size.}
#' \item{\code{max.ks}}{ The largest KS statistic across the covariates.}
#' \item{\code{mean.ks}}{ The average KS statistic across the covariates.}
#' \item{\code{bal.tab}}{ a (potentially large) table summarizing the quality of the
#' weights for equalizing the distribution of features across
#' the two groups. This table is best extracted using the
#' \code{\link{bal.table}} method. See the help for \code{\link{bal.table}} for details
#' on the table's contents.}
#' \item{\code{n.trees}}{ The estimated optimal number of gradient boosted
#' iterations to optimize the loss function for the associated
#' \code{stop.methods}.}
#' \item{\code{ps}}{ a data frame containing the estimated propensity scores. Each
#' column is associated with one of the methods selected in \code{stop.methods}.}
#' \item{\code{w}}{ a data frame containing the propensity score weights. Each
#' column is associated with one of the methods selected in \code{stop.methods}.}
#' If sampling weights are given then these are incorporated into these weights.
#' \item{\code{estimand}}{ The estimand of interest (ATT or ATE).}
#' }}
#' \item{\code{datestamp}}{ Records the date of the analysis.}
#' \item{\code{parameters}}{ Saves the \code{ps} call.}
#' \item{\code{alerts}}{ Text containing any warnings accumulated during the estimation.}
#' \item{\code{iters}}{ A sequence of iterations used in the GBM fits used by \code{\link[twang:plot.ps]{plot}} function.}
#' \item{\code{balance}}{ The balance measures for the pretreatment covariates used in plotting, with a column for each
#' \code{stop.method}.}
#' \item{\code{balance.ks}}{ The KS balance measures for the pretreatment covariates used in plotting, with a column for each
#' covariate.}
#' \item{\code{balance.es}}{ The standard differences for the pretreatment covariates used in plotting, with a column for each
#' covariate.}
#' \item{\code{ks}}{ The KS balance measures for the pretreatment covariates on a finer grid, with a column for each
#' covariate.}
#' \item{\code{es}}{ The standard differences for the pretreatment covariates on a finer grid, with a column for each
#' covariate.}
#' \item{\code{n.trees}}{ Maximum number of trees considered in GBM fit.}
#' \item{\code{data}}{ Data as specified in the \code{data} argument.}
#' }
#'
#' @seealso \code{\link{gbm}}, \code{\link{xgboost}}, \code{\link[twang:plot.ps]{plot}}, \code{\link{bal.table}}
#' @keywords models multivariate
#'
#' @references Dan McCaffrey, G. Ridgeway, Andrew Morral (2004). "Propensity
#' Score Estimation with Boosted Regression for Evaluating Adolescent
#' Substance Abuse Treatment", *Psychological Methods* 9(4):403-425.
#'
#' @export
ps<-function(formula = formula(data),
data,
# boosting options
n.trees = 10000,
interaction.depth = 3,
shrinkage = 0.01,
bag.fraction = 1.0,
n.minobsinnode =10,
perm.test.iters = 0,
print.level = 2,
verbose = TRUE,
estimand = "ATE",
stop.method = c("ks.mean", "es.mean"),
sampw = NULL,
version = "gbm",
ks.exact = NULL,
n.keep = 1,
n.grid = 25,
keep.data=TRUE,
...){
# collect named arguments from dots
args <- list(...)
args_named <- names(args)
# parse hidden options and xgboost parameters
params <- args$params
multinom <- if (!is.null(args$multinom)) args$multinom else FALSE
max_depth <- if (!is.null(args$max_depth)) args$max_depth else interaction.depth
subsample <- if (!is.null(args$subsample)) args$subsample else bag.fraction
nrounds <- if (!is.null(args$nrounds)) args$nrounds else n.trees
eta <- if (!is.null(args$eta)) args$eta else shrinkage
min_child_weight <- if (!is.null(args$min_child_weight)) args$min_child_weight else n.minobsinnode
# throw some errors if the user specifies two versions of the same option
if (!missing(n.trees) & ('nrounds' %in% args_named)) stop("Only one of n.trees and nrounds can be specified.")
if (!missing(interaction.depth) & ('max_depth' %in% args_named)) stop("Only one of interaction.depth and max_depth can be specified.")
if (!missing(shrinkage) & ('eta' %in% args_named)) stop("Only one of shrinkage and eta can be specified.")
if (!missing(bag.fraction) & ('subsample' %in% args_named)) stop("Only one of bag.fraction and subsample can be specified.")
if (!missing(n.minobsinnode) & ('min_child_weight' %in% args_named)) stop("Only one of n.minobsinnode and min_child_weight can be specified.")
# throw error if user specifies params with other options
if (!missing(interaction.depth) | ('max_depth' %in% args_named) | !missing(shrinkage) | ('eta' %in% args_named) | !missing(bag.fraction) | ('subsample' %in% args_named) ){
if (!is.null(params)) stop("params cannot be specified with any of interaction.depth, max_depth, shrinkage, eta, bag.fraction, or subsample.")
}
# check that data is not a tibble or data.table
if( class(data)[1] %in% c("tbl_df","tbl","data.table")){
stop("The twang package currently does not support data.table or tibble. Please convert your data object to a data.frame.")
}else{
if (class(data)[1] != "data.frame"){
warning("Data classes other than data.frame may cause errors." , call.=FALSE)
}
}
if (version=="legacy"){
## throw some errors if the user specifies an option not allowed in legacy version of ps
if (!is.null(ks.exact)) stop("Option ks.exact is not allowed with version='legacy'")
if (!is.null(params)) stop("Option params is not allowed with version='legacy'")
if (!is.null(args$tree_method)) stop("Option tree_method is not allowed with version='legacy'")
if (!missing(n.keep)) stop("Option n.keep is not allowed with version='legacy'")
if (!missing(n.grid)) stop("Option n.grid is not allowed with version='legacy'")
if (!missing(n.minobsinnode) | !is.null(args$min_child_weight)) stop("Options n.minobsinnode or min_child_weight are not allowed with version='legacy'")
if (!missing(keep.data)) stop("Option keep.data is not allowed with version='legacy'")
return(ps.old(formula = formula,
data = data, # data
n.trees = nrounds, # gbm options
interaction.depth = max_depth,
shrinkage=eta,
bag.fraction = subsample,
perm.test.iters = perm.test.iters,
print.level = print.level,
verbose = verbose,
estimand = estimand,
stop.method = stop.method,
sampw = sampw,
multinom = multinom,
...))
}else{
# xgboost tree method
tree_method <- if (!is.null(args$tree_method)) args$tree_method else "hist"
# throw error if user specifies params with version=="gbm"
if ( version=="gbm" & !is.null(params) ) stop("params cannot be specified when version='gbm'.")
return(ps.fast(formula = formula,
data = data, # data
n.trees = nrounds, # gbm options
interaction.depth = max_depth,
shrinkage = eta,
bag.fraction = subsample,
n.minobsinnode = min_child_weight,
params = params,
perm.test.iters = perm.test.iters,
print.level = print.level,
verbose = verbose,
estimand = estimand,
stop.method = stop.method,
sampw = sampw,
multinom = multinom,
ks.exact = ks.exact,
version = version,
tree_method = tree_method,
n.keep = n.keep,
n.grid = n.grid,
keep.data=keep.data))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.