getModelInfo = function(model, psOpt, minimize) {
# define a list named info
info = as.list("info")
# add the name of the target variable
info$y.name = model[["task.desc"]][["target"]]
# add the name of the feature(s)
info$featureName = model[["features"]]
# add numbers of feature(s)
info$featureNumber = length(model[["features"]])
# add type / class of feature(s)
info$featureType = ParamHelpers::getParamTypes(psOpt)
# add the name of the problem (name of the dataset)
info$dataName = model[["task.desc"]][["id"]]
# add the learners name
info$learner = model[["learner"]][["id"]]
# add an auxiliary named p which defines min or max by 1 and -1
if (minimize == FALSE) info$p = (-1)
if (minimize == TRUE) info$p = (1)
# add minimize as TRUE or FALSE
info$minimize = minimize
# add the levels of the discretes variables
info$discreteLevel = ParamHelpers::getValues(psOpt)
return(info)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.