#' Calculate Shannon-Wiener Index on a Matrix
#'
#' @description
#' This function computes Shannon-Wiener Index for each cell of a matrix,
#' using a parallelized approach and considering a specified moving window.
#'
#' @param x A numeric matrix representing the data on which the index is to abe calculated.
#' @param window The width of the moving window to consider for each cell.
#' The actual window size will be `(2 * window + 1) x (2 * window + 1)`. Default is 1.
#' @param na.tolerance The tolerance level for missing data within the moving window.
#' A window will be processed only if the proportion of non-missing data is above this threshold.
#' Value should be between 0 and 1. Default is 1.
#' @param debugging Boolean flag to enable or disable debugging messages. Default is FALSE.
#' @param np Number of processes for parallel computation.
#'
#' @return A matrix of the same dimensions as `x`, where each cell contains the
#' Shannon-Wiener Index calculated for the window around the cell.
#'
#' @examples
#' data <- matrix(runif(100), nrow = 10)
#' shannon_index <- ShannonP(data, window = 1, np = 1 )
#'
#' @export
ShannonP <- function(x, window = 1, na.tolerance=1, debugging=FALSE, np =1 ){
# `win` is the operative moving window
win = window
NAwin <- 2*window+1
message("\n\nProcessing moving Window: ", NAwin)
pb <- progress::progress_bar$new(
format = "[:bar] :percent in :elapsed\n",
# Total number of ticks is the number of column +NA columns divided the number of processor.
total = (dim(x)[2]/np)+5,
clear = FALSE,
width = 60,
force = FALSE)
#
## Reshape values
#
values <- as.numeric( as.factor(x) )
x_1 <- matrix(data = values, nrow = nrow(x), ncol = ncol(x))
#
## Add additional columns and rows to match moving window
#
hor <- matrix(NA, ncol = ncol(x), nrow = win)
ver <- matrix(NA, ncol = win, nrow = nrow(x)+ win * 2)
tx <- cbind(ver, rbind(hor,x_1,hor), ver)
rm(hor, ver, x_1, values); gc()
ShannonOP <- foreach::foreach(cl=(1+win):(ncol(x)+win),.verbose = F) %dopar% {
# Update progress bar
pb$tick()
ShannonOut <- sapply((1+win):(nrow(x)+win), function(rw) {
if( length(!which(!tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]%in%NA)) < floor(NAwin^2-((NAwin^2)*na.tolerance)) ) {
vv <- NA
return(vv)
}
else {
tw <- summary(as.factor(tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]),maxsum=10000)
if( "NA's"%in%names(tw) ) {
tw <- tw[-length(tw)]
}
if( debugging ) {
message("Shannon - parallelized\nWorking on coords ",rw,",",cl,". classes length: ",length(tw),". window size=",NAwin)
}
tw_labels <- names(tw)
tw_values <- as.vector(tw)
p <- tw_values/sum(tw_values)
vv <- (-(sum(p*log(p))))
return(vv)
}
})
return(ShannonOut)
}
message("\n\n Parallel calculation of Shannon's index complete.\n")
return(matrix(unlist(ShannonOP), ncol = ncol(x), nrow = nrow(x), byrow=FALSE))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.