#' @export
rhcoclust_network <- function(CoClustObj)
{
# Pre-process row and column names
Row.names <- paste0("R", CoClustObj$NG_Cocls) # R indicates row
Col.names <- paste0("C", CoClustObj$NC_Cocls) # C indicates column
len <- 1 : length(Col.names)
Combine.Row.Col <- sapply(len, function(len) c(Row.names[len], Col.names[len]))
# Create networks
# library(igraph)
graph.obj <- graph(Combine.Row.Col, directed = F)
color.edge <- rep("black", length(CoClustObj$Coclust_MeanMat$GC_CoMeanR))
color.edge[which(CoClustObj$Coclust_MeanMat$GC_CoMeanR > CoClustObj$UpContLimit)] <- "red"
color.edge[which(CoClustObj$Coclust_MeanMat$GC_CoMeanR < CoClustObj$LowrContLimit)] <- "blue"
# Visualization of clustering network plot
plot(graph.obj,
#edge.color=rep(c("red","pink"),5), # Edge color
edge.color = color.edge,
#vertex.color = rgb(0.8,0.4,0.3,0.8),
edge.width=(CoClustObj$Coclust_MeanMat$GC_CoMeanR/max(CoClustObj$Coclust_MeanMat$GC_CoMeanR))+1.5,
#edge.width = CoClustObj$Coclust_MeanMat$GC_CoMeanR / scale.threshold,# Edge width, defaults scale.threshold 10
edge.arrow.size = 1, # Arrow size, defaults to 1
edge.arrow.width = 1, # Arrow width, defaults to 1
edge.lty = c("solid"),
#edge.curved=c(rep(0,5), rep(1,5)) # Edge curvature, range 0-1 (FALSE sets it to 0, TRUE to 0.5)
main="Clustering Network Plot"
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.