library('corrP')
df = iris
n.cores = 1
p.value = 0.05
verbose = TRUE
comp = 'g'
alternative = 'g'
cor.nn = "pps"
cor.nc = "pps"
cor.cc = "pps"
parallel = TRUE
n.sum = 500
rk = F
lm.args =lm.args=pearson.args=cramersV.args=dcor.args=pps.args=mic.args=uncoef.args = list()
#test pps unit
for(i in 1:NCOL(df)){
for(j in 1:NCOL(df)){
p = corr_fun(df,ny = colnames(df)[i],nx =colnames(df)[j] ,cor.nn = cor.nn,cor.nc = cor.nc,cor.cc = cor.cc)
p2 = ppsr::score(df,y = colnames(df)[i],x =colnames(df)[i])
}}
p1 = corrp(df, cor.nn = cor.nn,cor.nc = cor.nc,cor.cc = cor.cc)
p1 = corr_matrix(p,cor.nn = cor.nn,cor.nc = cor.nc,cor.cc = cor.cc)
pps.test = corrp(df,cor.nn = cor.nn,cor.nc = cor.nc,cor.cc = cor.cc)
#ptest
x = iris[[1]]
y = iris[[2]]
x1 = ptest(x,y,FUN = function(x,y) cor(x,y),num.s = 2000 ,alternative = 't')
x2 = ptest(x,y,FUN = function(x,y) cor(x,y),num.s = 2000 ,alternative = 'g')
x3 = ptest(x,y,FUN = function(x,y) cor(x,y),num.s = 2000 ,alternative = 'l')
y1 = cor.test(x,y,alternative = 't')$p.value
y2 = cor.test(x,y,alternative = 'g')$p.value
y3 = cor.test(x,y,alternative = 'l')$p.value
x4 <- sample(1:30, 100, replace = TRUE)
y4 <- sample(0:1, 100, replace = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.