shinyServer(function(input, output, session) {
Simulation = reactive({
#########################################################
# Design parameters
parameters = list()
endpoint_index = as.numeric(input$endpoint_index)
parameters$sample_size = as.numeric(input$n)
assumptions = input$assumptions
parameters$info_frac = c(as.numeric(input$info_frac1 / 100), as.numeric(input$info_frac2 / 100), 1, as.numeric(input$info_frac3 / 100))
if (endpoint_index == 1) {
parameters$endpoint_type = "Normal"
parameters$control_mean = assumptions[1, 1]
parameters$treatment_mean = as.numeric(assumptions[1, 2])
parameters$control_sd = assumptions[2, 1]
parameters$treatment_sd = as.numeric(assumptions[2, 2])
}
if (endpoint_index == 2) {
parameters$endpoint_type = "Binary"
parameters$control_rate = assumptions[1, 1] / 100
parameters$treatment_rate = as.numeric(assumptions[1, 2] / 100)
}
if (endpoint_index == 3) {
parameters$endpoint_type = "Time-to-event"
parameters$control_time = assumptions[1, 1]
parameters$treatment_time = as.numeric(assumptions[1, 2])
parameters$event_count = as.numeric(input$event_count)
parameters$enrollment_period = as.numeric(input$enrollment_period)
parameters$enrollment_parameter = as.numeric(input$enrollment_parameter)
}
direction_index = as.numeric(input$direction_index)
if (direction_index == 1) parameters$direction = "Higher"
if (direction_index == 2) parameters$direction = "Lower"
parameters$dropout_rate = as.numeric(input$dropout_rate / 100)
parameters$futility_threshold = as.numeric(input$futility_threshold / 100)
parameters$promising_interval = c(as.numeric(input$lower_limit / 100), as.numeric(input$upper_limit / 100))
parameters$target_power = as.numeric(input$target_power / 100)
parameters$alpha = as.numeric(input$alpha)
parameters$nsims = as.numeric(input$nsims)
#########################################################
withProgress(message = "Running simulations", value = 1, {
# Run simulations
results = ADSSMod(parameters)
})
# Return the list of results
results
})
output$DownloadResults = downloadHandler(
filename = function() {
"Report.docx"
},
content = function(file) {
# Run simulations
results = Simulation()
doc = ReportDoc(results)
# Save the report
xfile = paste0(file, ".docx")
print(doc, target = xfile)
file.rename(xfile, file)
}
)
# Create a matrix for entering sample sizes
output$SampleSize = renderUI({
narms = 2
# Trial arms
trial_arms = c("Control", "Treatment")
value = matrix(0, 1, narms)
value[1, ] = rep(120, narms)
rownames(value) = "Sample size"
colnames(value) = trial_arms
matrixInput("n",
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE),
value = value
)
})
# Create a matrix for entering treatment effect assumptions
output$TreatmentEffectAssumptions = renderUI({
narms = 2
endpoint_index = as.numeric(input$endpoint_index)
# Trial arms
trial_arms = "Control"
if (narms >= 3) {
for (i in 2:narms) trial_arms = c(trial_arms, paste0("Treatment ", i - 1))
} else {
trial_arms = c(trial_arms, "Treatment")
}
if (endpoint_index == 1) {
value = matrix(0, 2, narms)
value[1, ] = c(0, rep(0.3, narms - 1))
value[2, ] = rep(1, narms)
rownames(value) = c("Mean", "Standard deviation")
}
if (endpoint_index == 2) {
value = matrix(0, 1, narms)
value[1, ] = c(10, rep(30, narms - 1))
rownames(value) = c("Rate (%)")
}
if (endpoint_index == 3) {
value = matrix(0, 1, narms)
value[1, ] = c(10, rep(14, narms - 1))
rownames(value) = c("Median time")
}
colnames(value) = trial_arms
matrixInput("assumptions",
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE),
value = value
)
})
output$OutcomeProbabilities = renderTable({
results = Simulation()
parameters = results$parameters
sim_results = results$sim_results
sim_summary = results$sim_summary
column_names = c("Parameter", "Value")
col1 = c("Probability of stopping for futility at Interim analysis 1 (%)",
"Probability of increasing the number of events at Interim analysis 2 (%)",
"Traditional design: Power (%)",
"Adaptive design: Power (%)")
col2 = c(sprintf("%0.1f", 100 * sim_summary$futility),
sprintf("%0.1f", 100 * sim_summary$increase),
sprintf("%0.1f", 100 * sim_summary$trad_power),
sprintf("%0.1f", 100 * sim_summary$ad_power))
data_frame = data.frame(col1, col2)
colnames(data_frame) = column_names
data_frame
})
output$Comparison = renderTable({
results = Simulation()
parameters = results$parameters
sim_results = results$sim_results
sim_summary = results$sim_summary
column_names = c("Interval", "Design", "Power (%)")
col1 = c("Unfavorable interval", "", "Promising interval", "", "Favorable interval", "")
col2 = rep(c("Traditional design", "Adaptive design"), 3)
col3 = c(sprintf("%0.1f", 100 * sim_summary$trad_under),
sprintf("%0.1f", 100 * sim_summary$ad_under),
sprintf("%0.1f", 100 * sim_summary$trad_prom),
sprintf("%0.1f", 100 * sim_summary$ad_prom),
sprintf("%0.1f", 100 * sim_summary$trad_over),
sprintf("%0.1f", 100 * sim_summary$ad_over))
data_frame = data.frame(col1, col2, col3)
colnames(data_frame) = column_names
data_frame
})
observeEvent(input$jump_to_panel2, {
updateTabItems(session, "sidebar",
selected = "endpoint_parameters")
})
observeEvent(input$jump_to_panel3, {
updateTabItems(session, "sidebar",
selected = "interim_parameters")
})
observeEvent(input$jump_to_panel4, {
updateTabItems(session, "sidebar",
selected = "general_parameters")
})
observeEvent(input$jump_to_panel5, {
updateTabItems(session, "sidebar",
selected = "simulation")
})
observeEvent(input$jump_to_panel6, {
updateTabItems(session, "sidebar",
selected = "report")
})
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.