#' @title brt predictions
#' @export
Brt_pre = function(variabledf, opti = F, ntree = 1000, y_varname = c("day_value", "night_value", "value_mean"), interaction.depth = 6,bag.fraction = 0.5,shrinkage= 0.01, training, test, grepstring, ...) {
prenres = paste(y_varname, "|", grepstring, sep = "")
pre_mat = subset_grep(variabledf[training, ], prenres)
x_test = variabledf[test, ]
if (opti) {
Xmat = subset_grep(variabledf[training, ], grepstring)
rf3 <- gbm.step(data = pre_mat, gbm.x = names(Xmat), gbm.y = y_varname, family = "gaussian", n.trees = ntree, interaction.depth= interaction.depth, shrinkage = shrinkage, bag.fraction = bag.fraction)
ntree = rf3$gbm.call$best.trees
} else {
formu = as.formula(paste(y_varname, "~.", sep = ""))
gbm1 = gbm(formula = formu, data = pre_mat, distribution = "gaussian", n.trees = ntree, interaction.depth = interaction.depth, shrinkage = shrinkage, bag.fraction = bag.fraction)
print(gbm1)
}
predict.gbm(gbm1, x_test, n.trees = ntree, type = "response")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.