View source: R/significant_met.R
significant_met | R Documentation |
Provides log2fold change and p value on metabolomics data using t test. One can then calculate significant metabolites by using the dataframe generated from this function.
significant_met(
metabolomics_data,
met_col,
analysis_type,
metadata,
normalization,
factor1,
factor2,
factor_col,
sample_col,
p_adjust
)
metabolomics_data |
metabolomics data associated to refmet class |
met_col |
column with metabolite names |
analysis_type |
type of analysis ex-GCMS, HILIAC positive ion mode. |
metadata |
Metadata |
normalization |
method for normalization : "half_of_min": where the NAs are replaced by half of min values in the data "remove_NAs": where Cols with NAs values are removed "50percent": where cols with more than 50% NAs values are removed |
factor1 |
first independent variable |
factor2 |
second independent variable |
factor_col |
column name of the independent variables |
sample_col |
the column name having samples |
p_adjust |
Method for p value adjustment, i.e. "fdr" |
stats_metabolites = significant_met(metabolomics_data=data,met_col="metabolite_name",
analysis_type=c('HILIC NEGATIVE ION MODE','HILIC POSITIVE ION MODE'),
metadata=metadata, factor1='No shield', factor2='plus shield',
factor_col='treatment',sample_col='local_sample_id', p_adjust='fdr',normalization="half_of_min")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.