## metaclipcc.BiasCorrection Construct a directed graph for bias correction
##
## Copyright (C) 2020 Predictia (http://www.predictia.es)
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @title Directed metadata graph construction for bias correction steps
#' @description Build a directed metadata graph from bias correction routines. A IPCC Atlas targeted version of the
#' more general \code{\link[metaclipR]{metaclipR.BiasCorrection}}.
#' @param graph metaclipR output containing the data top be bias-corrected.
#' @param TrainingGraph metaclipR output containing the training data (e.g. 20C3M/historical scenario in
#' climate change applications etc.)
#' @param ReferenceGraph metaclipR output containing the reference predictand (typically observations)
#' @param ReferenceGraphSpatialExtent Default to \code{NULL} and unused. Otherwise, this points to a SpatialExtent class node
#' containing the horizontal spatial extent information of the observations. This will update the Spatial extent of the calibrated
#' dataset to that of the reference observations used for calibration.
#' @param ReferenceGraphRectangularGrid Default to \code{NULL} and unused. Otherwise, this points to a ds:RectangularGrid class node
#' containing the grid definition of the predictand. This will update the Spatial extent of the calibrated
#' dataset to that of the reference observations used for calibration.
#' @param BC.method Character string indicating the name of the bias correction method. Currently accepted
#' values are \code{"EQM"} and \code{"ISIMIP3"} (the only ones implemented so far in the Atlas Chapter).
#' @param dc.description Default to \code{NULL} and unused. Otherwise, this is a character string that will be appendend as a
#' "dc:description" annotation to the ds:Calibration node.
#' @details This function takes as reference the semantics defined in the Calibration ontology defined in the
#' Metaclip Framework (\url{http://www.metaclip.org/}). These in turn are partially based on the VALUE Framework (GutiƩrrez et al. 2018)
#' @references
#' GutiƩrrez et al, 2018. An intercomparison of a large ensemble of statistical downscaling methods over Europe:
#' Results from the VALUE perfect predictor cross-validation experiment. International Journal of Climatology.
#' https://doi.org/10.1002/joc.5462
#' @export
#' @importFrom igraph make_empty_graph add_vertices add_edges
#' @author J. Bedia
metaclipcc.BiasCorrection <- function(graph,
TrainingGraph,
ReferenceGraph,
ReferenceGraphSpatialExtent = NULL,
ReferenceGraphRectangularGrid = NULL,
BC.method = "EQM",
dc.description = "Bias adjustment of the input data")
{
BC.method <- match.arg(BC.method, choices = c("EQM", "ISIMIP3"))
BC.class <- switch(BC.method,
"EQM" = "cal:NonParametricBiasCorrection",
"ISIMIP3" = "cal:ParametricBiasCorrection")
if (class(graph$graph) != "igraph") stop("Invalid input graph (not an 'igraph-class' object)")
if (class(TrainingGraph$graph) != "igraph") stop("Invalid input TrainingGraph (not an 'igraph-class' object)")
if (class(ReferenceGraph$graph) != "igraph") stop("Invalid input ReferenceGraph (not an 'igraph-class' object)")
pnode <- graph$parentnodename
graph <- graph$graph
# Adding the Calibration node
cal.node <- paste0("Calibration.", randomName())
graph <- my_add_vertices(graph,
name = cal.node,
label = "Calibration",
className = "cal:Calibration")
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, pnode),
getNodeIndexbyName(graph, cal.node)),
label = "cal:hadCalibration")
# Update spatial extent
if (!is.null(ReferenceGraphSpatialExtent)) {
if (class(ReferenceGraphSpatialExtent$graph) != "igraph") stop("Invalid \'ReferenceGraphSpatialExtent\' structure")
spatextent.nodename <- ReferenceGraphSpatialExtent$parentnodename
graph <- my_union_graph(graph, ReferenceGraphSpatialExtent$graph)
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, cal.node),
getNodeIndexbyName(graph, spatextent.nodename)),
label = "ds:hasHorizontalExtent")
}
if (!is.null(ReferenceGraphRectangularGrid)) {
if (class(ReferenceGraphRectangularGrid$graph) != "igraph") stop("Invalid \'ReferenceGraphRectangularGrid\' structure")
grid.nodename <- ReferenceGraphRectangularGrid$parentnodename
graph <- my_union_graph(graph, ReferenceGraphRectangularGrid$graph)
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, cal.node),
getNodeIndexbyName(graph, grid.nodename)),
label = "ds:hasRectangularGrid")
}
# Adding the CalibrationMethod node (unlike metaclipR.BiasCorrection, here only know class individuals accepted)
# A dc:description field is assumed to be introduced
method.nodename <- paste0("cal:", BC.method)
graph <- my_add_vertices(graph,
name = method.nodename,
label = BC.method,
className = BC.class,
attr = list("dc:description" = dc.description))
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, cal.node),
getNodeIndexbyName(graph, method.nodename)),
label = "cal:withCalibrationMethod")
# Adding the training Data
graph <- my_union_graph(graph, TrainingGraph$graph)
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, cal.node),
getNodeIndexbyName(graph, TrainingGraph$parentnodename)),
label = "cal:withTrainingData")
# Adding the predictand Data
graph <- my_union_graph(graph, ReferenceGraph$graph)
graph <- add_edges(graph,
c(getNodeIndexbyName(graph, cal.node),
getNodeIndexbyName(graph, ReferenceGraph$parentnodename)),
label = "cal:withReferenceData")
return(list("graph" = graph, "parentnodename" = cal.node))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.