## ---- eval=FALSE--------------------------------------------------------------
# if(!requireNamespace("devtools", quietly = TRUE)){ #check if you already have the devtools package
# install.packages("devtools") #if not, install it
# }
# devtools::install_github("marseille-proteomique/DIAgui")
## ---- message=FALSE, eval=FALSE-----------------------------------------------
# library("DIAgui")
## ---- eval=FALSE--------------------------------------------------------------
# runDIAgui() #this function will directly start the app
## ---- eval=FALSE--------------------------------------------------------------
# report <- small_report
# View(report) #take a look at the data
## ---- eval=FALSE--------------------------------------------------------------
# readr::write_tsv(report, "small_report.tsv") # save the data as a tsv file
## ---- eval=FALSE--------------------------------------------------------------
# report <- diann_load("small_report.tsv")
## ---- eval=FALSE--------------------------------------------------------------
# precursor <- diann_matrix(report, proteotypic.only = TRUE, method = "max")
#
# head(precursor) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# peptide <- diann_matrix(report, id.header = "Modified.Sequence",
# proteotypic.only = TRUE, method = "max")
#
# head(peptide) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# peptide_maxlfq <- report %>% dplyr::filter(Q.Value <= 0.01 & PG.Q.Value <= 0.01 & Protein.Q.Value <= 1 & GG.Q.Value <= 1)
# peptide_maxlfq <- iq::preprocess(peptide_maxlfq,
# intensity_col = "Precursor.Normalised",
# primary_id = "Modified.Sequence.",
# sample_id = "File.Name",
# secondary_id = "Precursor.Id",
# median_normalization = FALSE,
# pdf_out = NULL)
# peptide_maxlfq <- iq::fast_MaxLFQ(peptide_maxlfq)
# peptide_maxlfq <- peptide_maxlfq$estimate
# peptide_maxlfq <- as.data.frame(peptide_maxlfq)
#
# head(peptide_maxlfq) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# peptide_maxlfq <- report %>% dplyr::filter(Q.Value <= 0.01 & PG.Q.Value <= 0.01 & Protein.Q.Value <= 1 & GG.Q.Value <= 1)
# peptide_maxlfq <- diann_maxlfq(peptide_maxlfq,
# group.header = "Modified.Sequence",
# id.header = "Precursor.Id",
# quantity.header = "Precursor.Normalised",
# count_pep = FALSE
# )
#
# head(peptide_maxlfq) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# protein <- re %>% report %>% dplyr::filter(Q.Value <= 0.01 & PG.Q.Value <= 0.01 & Protein.Q.Value <= 1 & GG.Q.Value <= 1)
# n_cond <- length(unique(df$File.Name))
#
# protein_maxlfq <- diann_maxlfq(protein,
# group.header="Protein.Group",
# id.header = "Precursor.Id",
# quantity.header = "Precursor.Normalised",
# only_countsall = FALSE,
# Top3 = TRUE
# )
#
# # extract useful information from report
# nc <- ncol(protein_maxlfq)
# protein_maxlfq$Protein.Group <- rownames(protein_maxlfq)
# rownames(protein_maxlfq) <- 1:nrow(protein_maxlfq)
# protein <- protein[(protein$Protein.Group %in% protein_maxlfq$Protein.Group),]
# protein <- protein[order(protein$Protein.Group),]
# protein_maxlfq$Protein.Names <- unique(protein[,c("Protein.Group", "Protein.Names")])$Protein.Names
# protein_maxlfq$First.Protein.Description <- unique(protein[,c("Protein.Group", "First.Protein.Description")])$First.Protein.Description
# protein_maxlfq$Genes <- unique(protein[,c("Protein.Group", "Genes")])$Genes
# protein_maxlfq <- protein_maxlfq[,c((nc+1):ncol(protein_maxlfq), 1:nc)]
#
# # get iBAQ quantification
# protein_seq <- getallseq(pr_id = protein_maxlfq$Protein.Group,
# spec = "SACCHAROMYCES CEREVISIAE")
# # here, the function makes a query to swissprot to get the amino-acid sequence from each protein, so it can be long
# # you can also put one or several FASTA files (go check getallseq documentation)
#
# # to compute iBAQ quantification you'll the raw intensities
# raw <- diann_matrix(report, id.header = "Protein.Group",
# quantity.header = "Precursor.Quantity",
# method = "sum")
# raw$Genes <- NULL
# raw$Protein.Names <- NULL
# # compute iBAQ quantification
# raw <- get_iBAQ(raw, proteinDB = protein_seq,
# id_name = "Protein.Group",
# ecol = 2:(n_cond+1),
# peptideLength = c(5,36),
# proteaseRegExp = DIAgui:::getProtease("trypsin"),
# log2_transformed = FALSE)
#
# raw <- raw[,-c(2:(n_cond+1))]
#
# protein_maxlfq <- dplyr::left_join(protein_maxlfq, raw, by = "Protein.Group")
#
#
# head(protein_maxlfq) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# genes <- diann_matrix(report,
# id.header="Genes",
# quantity.header="Genes.MaxLFQ.Unique",
# proteotypic.only = TRUE,
# get_pep = TRUE, only_pepall = TRUE,
# Top3 = TRUE,
# method = "max")
#
# head(genes) # check the results
## ---- eval=FALSE--------------------------------------------------------------
# report_process("small_report.tsv", # needs to be path to a report file
# get_iBAQ = TRUE, get_Top3 = FALSE,
# species = "SACCHAROMYCES CEREVISIAE")
## ---- eval=FALSE--------------------------------------------------------------
# names(genes)[1] <- "id"
## ---- eval=FALSE--------------------------------------------------------------
# # density plot
# densityDIA(genes, transformation = "log2", area = TRUE, data_type = "intensity", tit = "My plot")
#
# # MDS plot
# MDS_DIA(genes, transformation = "log2", data_type = "intensity", tit = "My plot")
#
# # interactive heatmap
# heatmapDIA(genes, transformation = "log2", print_val = FALSE, data_type = "intensity")
## ---- eval=FALSE--------------------------------------------------------------
# validDIA(genes, "log2", data_type = "intensity", prop_cut = 0.75) # we keep approximately 90% of the genes
#
# validDIA(genes, "log2", data_type = "intensity", prop_cut = 0.3) # we keep all genes
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.