View source: R/FindClusterSweep.R
FindClusterSweep | R Documentation |
Run common single-cell RNA-seq clustering algorithms as implemented in Seurat across a range of resolution values and compute common clustering metrics. This function assumes a KNN graph already exists in the specified assay. Run seurat's FindNeighbors before this function.
FindClusterSweep(
seurat,
assay = "RNA",
resolutions = c(0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6),
algorithm = 1,
conda,
pca_dim = c(1:30),
reduction = "pca",
plot_reduction = "umap",
file_name = "FindClusterSweep_plots"
)
seurat |
A seurat object |
assay |
seurat assay e.g. 'RNA' |
resolutions |
Vector of clustering resolutions |
algorithm |
Seurat FindClusters algorithm parameter. From Seurat: 'Algorithm for modularity optimization 1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm. Leiden requires the leidenalg python.' |
conda |
If applicable, path to conda environment. Required for Leiden algorithm = 4 |
pca_dim |
vector of dimensions to use for computing silheoutte scores. default = 0,30 |
reduction |
reduction to use for computing silhouette scores. default = 'pca' |
plot_reduction |
reduction to plot silhouette scores. default = 'umap' |
file_name |
plot .pdf file name. default = 'FindClusterSweep_plots' |
A seurat object with clustering. .pdf document with a series of clustering related plots
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.