FindClusterSweep: Run common single-cell RNA-seq clustering algorithms as...

View source: R/FindClusterSweep.R

FindClusterSweepR Documentation

Run common single-cell RNA-seq clustering algorithms as implemented in Seurat across a range of resolution values and compute common clustering metrics. This function assumes a KNN graph already exists in the specified assay. Run seurat's FindNeighbors before this function.

Description

Run common single-cell RNA-seq clustering algorithms as implemented in Seurat across a range of resolution values and compute common clustering metrics. This function assumes a KNN graph already exists in the specified assay. Run seurat's FindNeighbors before this function.

Usage

FindClusterSweep(
  seurat,
  assay = "RNA",
  resolutions = c(0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6),
  algorithm = 1,
  conda,
  pca_dim = c(1:30),
  reduction = "pca",
  plot_reduction = "umap",
  file_name = "FindClusterSweep_plots"
)

Arguments

seurat

A seurat object

assay

seurat assay e.g. 'RNA'

resolutions

Vector of clustering resolutions

algorithm

Seurat FindClusters algorithm parameter. From Seurat: 'Algorithm for modularity optimization 1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm. Leiden requires the leidenalg python.'

conda

If applicable, path to conda environment. Required for Leiden algorithm = 4

pca_dim

vector of dimensions to use for computing silheoutte scores. default = 0,30

reduction

reduction to use for computing silhouette scores. default = 'pca'

plot_reduction

reduction to plot silhouette scores. default = 'umap'

file_name

plot .pdf file name. default = 'FindClusterSweep_plots'

Value

A seurat object with clustering. .pdf document with a series of clustering related plots


mgildea87/CVRCFunc documentation built on Nov. 9, 2024, 7:39 p.m.