# code to create the json prediction:
webApi <- # To be completed
populationSettings <- list(PatientLevelPrediction::createStudyPopulationSettings(binary = T,
includeAllOutcomes = T,
firstExposureOnly = T,
washoutPeriod = 365,
removeSubjectsWithPriorOutcome = T,
priorOutcomeLookback = 99999,
requireTimeAtRisk = T,
minTimeAtRisk = 1824,
riskWindowStart = 1,
startAnchor = 'cohort start',
endAnchor = 'cohort start',
riskWindowEnd = 1825,
verbosity = 'INFO',
addExposureDaysToEnd = F,
addExposureDaysToStart = F))
modelList <- list(list("LassoLogisticRegressionSettings" = list("variance" = 0.01))
)
covariateSettings <- list(list(list(fnct = 'createCovariateSettings',
settings = FeatureExtraction::createCovariateSettings(useDemographicsGender = T,
useDemographicsAge = T,
useDemographicsAgeGroup = T)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Cancer',
covariateId = 22322,
cohortId = 22322,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'COPD',
covariateId = 22323,
cohortId = 22323,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Diabetes',
covariateId = 22324,
cohortId = 22324,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Heart disease',
covariateId = 22325,
cohortId = 22325,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Hypertension',
covariateId = 22326,
cohortId = 22326,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Hyperlipidemia',
covariateId = 22327,
cohortId = 22327,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Kidney disease',
covariateId = 22328,
cohortId = 22328,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Depression',
covariateId = 22329,
cohortId = 22329,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)),
list(fnct = 'createCohortCovariateSettings',
settings = list(covariateName = 'Ischemic stroke',
covariateId = 22330,
cohortId = 22330,
startDay= -99999,
endDay= 0,
count=F,
ageInteraction = F)))
)
# resrictOutcomePops <- data.frame(outcomeId = c(16428,16435),
# populationSettingId = c(1,2))
# resrictModelCovs = data.frame(modelSettingId = c(1,1,2),
# covariateSettingId = c(1,2,1))
executionSettings <- list(washoutPeriod = 365,
minCovariateFraction = 0.001,
normalizeData = T,
testSplit = "stratified",
testFraction = 0.25,
splitSeed = 1000,
nfold = 3)
json <- createDevelopmentStudyJson(packageName = 'EmcDementiaPredictionTable1',
packageDescription = 'A package to populate journal Table 1',
createdBy = 'Henrik John',
organizationName = 'Erasmus MC',
targets = data.frame(targetId = c(22337),
cohortId = c(22337),
targetName = c('Target')),
outcomes = data.frame(outcomeId = c(7414),
cohortId = c(7414),
outcomeName = c('Outcome')),
populationSettings = populationSettings,
modelList = modelList,
covariateSettings = covariateSettings,
resrictOutcomePops = NULL,
resrictModelCovs = NULL,
executionSettings = executionSettings,
webApi = webApi,
outputLocation = 'D:/hjohn/Table1',
jsonName = 'predictionAnalysisList.json')
specifications <- Hydra::loadSpecifications(file.path('D:/hjohn/Table1', 'predictionAnalysisList.json'))
Hydra::hydrate(specifications = specifications, outputFolder = 'D:/hjohn/Table1/EmcDementiaPredictionTable1')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.