#'
#' Measures the semantic footprint of a term (computed over place-keyword matrix)
#'
#' @export
semantic_footprint = function(mat, term, coords) {
vec = mat[,term]
vec = vec[vec > 0]
vec = vec[names(vec) %in% coords[,"NAME"]]
hits = which(coords[,"NAME"] %in% names(vec))
vec = vec[coords[hits,"NAME"]]
lat = coords[hits,"LAT"]
lon = coords[hits,"LON"]
lon[lon >= 180] = lon[lon >= 180] - 360
mean_lon = sum(lon * vec[vec > 0]) / sum(vec)
mean_lat = sum(lat * vec[vec > 0]) / sum(vec)
lon = coords[hits,"LON"]
distances = c()
for (i in 1:length(lon)) {
lati = lat[i]
loni = lon[i]
d = great_circle_distance(lon1 = mean_lon,
lat1 = mean_lat,
lon2 = loni,
lat2 = lati)
distances = c(distances,d)
}
mean_dist = sum(distances * vec) / sum(vec)
sd_dist = sd(distances)
results = list()
results$n = length(vec)
results$freq = sum(vec)
results$sd = sd(vec)
results$lon = mean_lon
results$lat = mean_lat
results$radius = mean_dist
results$stdev = sd_dist
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.