#--------------------------------
# Data tables of phen/ped
#--------------------------------
#' @export
myphd_ddbb.phen <- function(dir)
{
### argument to 'setwd()'
if(missing(dir)) {
dir <- myphd_ddbb.phendir()
}
stopifnot(file.exists(dir))
### argument to 'library()'
myphd_ddbb.required_packages(
locale = 'es_ES.UTF-8',
update_packages = FALSE)
### list files
l_files <- myphd_ddbb.phen.load_dt_block(
home_dir = dir,
pattern = 'RData')
### list files
if(endsWith(l_files[[1]], 'RData') == TRUE) {
### vector of 'colnames()'
l_plt <- myphd_ddbb.traits.platelets()[['original_tr']]
### 'load()'
load(l_files[['platelet_norm']])
### update 'data'
dat <- dat %>%
select(ID, starts_with('age'), gr, sex, con, smk, all_of(l_plt)) %>%
as_tibble()
### double check ouliers #01
## dat[['IPFCT']] > 14
## dat[['PFAadp']] > 200
## dat[['PFAepin']] > 280
### names()
l_dat <- list(dat, K)
names(l_dat) <- c('platelet_norm', 'K_matrix')
### return
return(l_dat)
} else {
dat <- myphd_ddbb.phen.load_dt_block(
home_dir = dir)
### return
return(dat)
}
}
#----------------
# Get normal data
#----------------
#' @export
thesis.norm.platelets <- function(dir)
{
# read phen (traits, covariables & set)
load("~/Datasets/GAIT_2/set.RData")
# subset phens
phens <- myphd_ddbb.traits.platelets()
# read normal data
dat_norm <- read.csv("~/Datasets/GAIT_2/datnorm.csv")
# phen
dat <- subset(set@sampleInfo, select = c(phens, "AGE", "SEX",
"contraception", "smoking"))
dat$ID <- rownames(dat)
stopifnot(all(dat_norm$ID %in% dat$ID))
### update variables (gr, AGEc)
dat <- mutate(dat,
gr = ifelse(AGE < 13, 1,
ifelse(AGE < 19, 2,
ifelse(AGE < 65, 3,
ifelse(AGE < 102, 4, stop())))))
dat <- mutate(dat,
AGEc = ifelse(AGE < 13, AGE - 13/2,
ifelse(AGE < 19, AGE - (13 + 19)/2,
ifelse(AGE < 65, AGE - (65 + 19)/2,
ifelse(AGE < 102, AGE - (102 + 65)/2, stop())))))
dat <- within(dat, {
gr <- factor(gr)
gr <- relevel(gr, ref = 3)
})
dat <- within(dat, {
SEX <- factor(SEX)
SEX <- relevel(SEX, ref = "M")
})
### join
dat <- left_join(dat, dat_norm, by = "ID")
### datacleaning IPF
ind1 <- which(dat$IPFCT > 14)
dat$IPFCT[ind1] <- NA
dat$IPFAB[ind1] <- NA
dat$HIPFCT[ind1] <- NA
dat$IPFX[ind1] <- NA
# datacleaning PFA
ind2 <- which(dat$PFAadp > 200)
dat$PFAadp[ind2] <- NA
ind3 <- which(dat$PFAepin > 280)
dat$PFAepin[ind3] <- NA
### rename variables
dat <- rename(dat, c(contraception = "con", smoking = "smk", AGE = "age", AGEc = "age_c", SEX = "sex"))
### subset data == 804 (healthy)
dat <- subset(dat, NORPT == "NOR")
stopifnot(nrow(dat) == 804)
### return
return(dat)
}
#------------
# IDs/alerts
#------------
#' @export
thesis.id.alert <- function()
{
c("32210", # Extracción muy larga
"34310", # Embarazada de 3 semanas
"38203", # Plasma hemolizado; extracción larga
"38312", # HBPM (added by Marina)
"39309", # Extracción larga
"42204", # HBPM en las últimas 24h
"43214", # Hepatopatía crónica
"45210", # HBPM en las últimas 24h
"47312", # HBPM y fase aguda de trombosis
"49201", # HBPM
"52116", # Hepatopatía crónica
"52314", # Embarazada de 7 semanas
"54209", # Hepatopatía crónica
"54308", # TVP el mismo día del estudio (fase aguda)
"55313", # Sintrom
"64205", # Sintrom
"66102", # Sintrom
"67201" # Sintrom
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.