R/coef.lm.rrpp.r

Defines functions coef.lm.rrpp

Documented in coef.lm.rrpp

#' coef for lm.rrpp model fits
#'
#' @description Computes ordinary or generalized least squares coefficients
#' over the permutations of an \code{\link{lm.rrpp}} model fit with predefined 
#' random permutations.
#' For each coefficient vector, the Euclidean distance is calculated as an 
#' estimate of
#' the amount of change in Y, the n x p matrix of dependent variables; larger 
#' distances mean more change 
#' in location in the data space associated with a one unit change in the model 
#' design, for the parameter
#' described.  Random coefficients are based on either RRPP or FRPP, as defined 
#' by the 
#' \code{\link{lm.rrpp}} model fit.  
#' 
#'  \subsection{The test argument will be deprecated}{ 
#'  
#' The following details will also be removed:
#'  
#' This function can be used to test the specific coefficients of an 
#' lm.rrpp fit.  The test
#' statistics are the distances (d), which are also standardized (Z-scores).  
#' The Z-scores might be easier to compare,
#' as the expected values for random distances can vary among coefficient 
#' vectors.
#' 
#' If RRPP is used, all distributions of coefficient vector distances are 
#' based on appropriate null models, as defined by SS type.  Please be aware that this 
#' can result in two seemingly strange but reasonable phenomena.  First, if type II or
#' type III SS is used, the intercept will not appear in test results (because the function
#' seeks model parameter differences to know for which coefficients to calculate Euclidean 
#' distances).  Even if it appears for type I SS, this is merely an artifact of sequential
#' model building and there really is no meaningful test of intercept = 0.  Second, 
#' Euclidean distances might not always be logical, especially when viewing univariate
#' coefficients, in which case the expected d is |b|.  Coefficients without a test are
#' based on the full model; tests are based on the estimates of coefficients (b), 
#' given a null model.  For example, for a model, y ~ b1 + b2 + b3, with type I SS,
#' b2 will be estimated and tested, using a null model, y ~ b1 and a full model, 
#' y ~ b1 + b2.  The estimate for b2 might not be the same in the test as when estimated 
#' from the model, y ~ b1 + b2 + b3.  Therefore, the d statistic might not reflect what one
#' would expect from the full model (like when using type III SS).  
#'  }
#' 
  
#'  \subsection{Difference between coef.lm.rrpp test and betaTest}{ 
#'  The test for coef.lm.rrpp uses the square-root of inner-products of vectors (d) as a 
#'  test statistic and only tests the null hypothesis that the length of the vector is 0.  
#'  The significance of the test is based on random values produced by RRPP, based on the
#'  matrices of coefficients that are produced in all permutations.  The null models for generating
#'  RRPP distributions are consistent with those used for ANOVA, as specified in the 
#'  \code{\link{lm.rrpp}} fit by choice of SS type.  Therefore, the random coefficients are
#'  consistent with those produced by RRPP for generating random estimates used in ANOVA.
#'  
#'  The betaTest analysis allows different null hypotheses to be used (vector length is not necessarily 0) 
#'  and unless otherwise specified, uses a null model that lacks one vector of parameters and a full
#'  model that contains all vectors of parameters, for the parameter for which coefficients are estimated.
#'  This is closest to a type III SS method of estimation, but each parameter is dropped from the model,
#'  rather than terms potentially comprising several parameters.  Additionally, betaTest calculates
#'  Mahalanobis distance, in addition to Euclidean distance, for vectors of coefficients.  
#'  This statistic is probably 
#'  better for more types of models (like generalized least squares fits).
#' }
#' @param object Object from \code{\link{lm.rrpp}}
#' @param SE Whether to include standard errors of coefficients.  Standard
#' errors are muted if test = TRUE.
#' @param test Logical argument that if TRUE, performs hypothesis tests 
#' (Null hypothesis is vector distance = 0)
#' for the observed coefficients.  If FALSE, only the observed coefficients 
#' are returned.
#' @param confidence The desired confidence limit to print with a table of 
#' summary statistics,
#' if test = TRUE.  Because distances are directionless, confidence limits 
#' are one-tailed.
#' @param ... Other arguments (currently none)
#' @export
#' @author Michael Collyer
#' @keywords utilities
#' @seealso \code{\link{betaTest}}
#' @examples 
#' \dontrun{
#' # See examples for lm.rrpp to see how anova.lm.rrpp works in conjunction
#' # with other functions
#' 
#' data(Pupfish)
#' names(Pupfish)
#' Pupfish$logSize <- log(Pupfish$CS)
#'
#' fit <- lm.rrpp(coords ~ logSize + Sex*Pop, 
#' SS.type = "I", data = Pupfish, verbose = TRUE) 
#' 
#' coef(fit) # Just coefficients
#' coef(fit, SE = TRUE) # Coefficients with SE
#' coef(fit, test = TRUE, 
#' confidence = 0.99) # Test of coefficients
#' }
coef.lm.rrpp <- function(object, SE = FALSE, test = FALSE, confidence = 0.95, ...) {
  x <- object
  k <- length(x$LM$term.labels)
  rc <- x$LM$random.coef
  rd <- x$LM$random.coef.distances
  gls <- x$LM$gls
  coef.obs <- if(gls) x$LM$gls.coefficients else x$LM$coefficients
  n <- x$LM$n
  p <- x$LM$p
  p.prime = x$LM$p.prime
  model.terms <- x$LM$Terms
  
  PermInfo <- getPermInfo(x, "all")
  
  perms <- PermInfo$perms
  SS.type <- x$ANOVA$SS.type
  RRPP <- PermInfo$perm.method
  
  indb <- boot.index(length(PermInfo$perm.schedule[[1]]), 
                            PermInfo$perms -1, 
                     PermInfo$block, 
                     PermInfo$perm.seed)
  if(SE) {
    betas <- beta.boot.iter(x, indb)
    betas <- sapply(betas, as.vector)
    if(is.vector(betas))
      betas <- matrix(betas, 1, length(betas))
    bd <- betas - rowMeans(betas)
    if(is.vector(bd))
      bd <- matrix(bd, 1, length(bd))
    se <- sqrt(rowSums(bd^2) / perms)
    if(is.matrix(coef.obs)){
      se <- matrix(se, nrow(coef.obs), ncol(coef.obs))
      dimnames(se) <- dimnames(coef.obs)
    } else names(se) <- names(coef.obs)
    
    if(is.matrix(se) && any(rownames(se) == "(Intercept)")){
      rmove <- which(rownames(se) == "(Intercept)")
      Y <- as.matrix(x$LM$Y)
      X <- x$LM$X
      if(gls) {
        Pcov <- x$LM$Pcov
        if(is.null(Pcov) && !is.null(x$LM$Cov))
          Pcov <- Cov.proj(x$LM$Cov)
        if(is.null(Pcov)){
          w <- sqrt(x$LM$weights)
          Y <- Y * w
          X <- X * w
        } else {
          Y <- Pcov %*% Y
          X <- Pcov %*% X
        }
      }
      
      X0 <- X[, -rmove]
      Q0 <- QRforX(X0)$Q
      Hb <- as.matrix(getHb(QRforX(X)))
      Ft <- fastFit(Q0, Y, n, p)
      Re <- as.matrix(Y - Ft)

      result <- sapply(indb, function(x)
        as.matrix(Hb %*% (Ft + Re[x,]))[rmove,])
      
      if(is.vector(result)) result <- matrix(result, 1, perms)
      ri <- as.matrix(result - rowMeans(result))
      se[rmove, ] <- sqrt(rowSums(ri^2) / perms)
    }
    
  } else se <- NULL
  
  test.ok <- (x$verbose && !x$turbo)
  if(test && !test.ok) {
    cat("\nCoefficients test not available because you either turbo-charged\n")
    cat("your model fit or used verbose = FALSE.\n")
    cat("Go back to lm.rrpp and choose turbo = FALSE & verbose = TRUE\n")
    cat("if you wish to test coefficients.\n\n")
    test = FALSE
  }
  if(test){
    if(confidence < 0) stop("Confidence level should be between 0 and 1")
    if(confidence > 1) stop("Confidence level should be between 0 and 1")
    if(k > 0) {
      PV <- apply(rd, 1, pval)
      Z <- apply(rd, 1, effect.size)
      ucl <- apply(rd, 1, function(x) quantile(x, confidence))
      stat.tab <- data.frame(d.obs = rd[,1], ucl=ucl, Zd=Z, P=PV)
      colnames(stat.tab)[2] <- paste("UCL (", confidence*100,"%)", sep = "")
      colnames(stat.tab)[4] <- "Pr(>d)"

    } else {
      PV <- Z <- ucl <- stat.tab <- NULL
    }
    
    out <- list(coef.obs = coef.obs,
                coef.se <- se,
                random.coef = rc,
                random.distances = rd,
                n = n, p=p, p.prime=p.prime, k.terms = k, 
                confidence = confidence,
                model.terms = model.terms, nperms = perms,
                RRPP = RRPP, gls=gls, SS.type = SS.type,
                stat.table = stat.tab, test = test)
    class(out) <- "coef.lm.rrpp"
  } else if(SE){
    out <- list(coef.obs = coef.obs, coef.se = se)
    out$test <- FALSE
    class(out) <- "coef.lm.rrpp"
    } else out <- coef.obs
  
  out
}
mlcollyer/RRPP documentation built on Feb. 20, 2025, 10:27 p.m.