Cluster analysis for mlr3
mlr3cluster is an extension package for cluster analysis within the mlr3 ecosystem. It is a successor of clustering capabilities of mlr2.
Install the last release from CRAN:
install.packages("mlr3cluster")
Install the development version from GitHub:
devtools::install_github("mlr-org/mlr3cluster")
The current version of mlr3cluster contains:
Also, the package is integrated with mlr3viz which enables you to create great visualizations with just one line of code!
| ID | Learner | Package | | :--| :------ | :------ | | clust.agnes | Agglomerative Hierarchical Clustering | cluster | | clust.ap | Affinity Propagation Clustering | apcluster | | clust.cmeans | Fuzzy C-Means Clustering | e1071 | | clust.cobweb | Cobweb Clustering Algorithm | RWeka | | clust.dbscan | Density-based Clustering | dbscan | | clust.diana | Divisive Hierarchical Clustering | cluster | | clust.em | Expectation-Maximization Clustering | RWeka | | clust.fanny | Fuzzy Clustering | cluster | | clust.featureless | Simple Featureless Clustering | mlr3cluster | | clust.ff | FarthestFirst Clustering Algorithm | RWeka | | clust.hclust | Agglomerative Hierarchical Clustering | stats | | clust.kkmeans | Kernel K-Means Clustering | kernlab | | clust.kmeans | K-Means Clustering | stats | | clust.mclust | Gaussian Mixture Models-Based Clustering | mclust | | clust.MBatchKMeans | Mini Batch K-Means Clustering | ClusterR | | clust.meanshift | Mean Shift Clustering | LPCM | | clust.pam | Clustering Around Medoids | cluster | | clust.SimpleKMeans | K-Means Clustering (WEKA) | RWeka | | clust.xmeans | K-Means with Automatic Determination of k | RWeka |
| ID | Measure | Package | | :--| :------ | :------ | | clust.dunn | Dunn index | fpc | | clust.ch | Calinski Harabasz Pseudo F-Statistic | fpc | | clust.silhouette | Rousseeuw's Silhouette Quality Index | cluster | | clust.wss | Within Sum of Squares | fpc |
library(mlr3)
library(mlr3cluster)
task = mlr_tasks$get("usarrests")
learner = mlr_learners$get("clust.kmeans")
learner$train(task)
preds = learner$predict(task = task)
Check out the blogpost for a more detailed introduction to the package. Also, mlr3book has a section on clustering.
If you have any questions, feedback or ideas, feel free to open an issue here.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.