mlr_learners_clust.SimpleKMeans | R Documentation |
A LearnerClust for Simple K Means clustering implemented in RWeka::SimpleKMeans()
.
The predict method uses RWeka::predict.Weka_clusterer()
to compute the
cluster memberships for new data.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
mlr_learners$get("clust.SimpleKMeans") lrn("clust.SimpleKMeans")
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Id | Type | Default | Levels | Range |
A | untyped | "weka.core.EuclideanDistance" | - | |
C | logical | FALSE | TRUE, FALSE | - |
fast | logical | FALSE | TRUE, FALSE | - |
I | integer | 100 | [1, \infty) |
|
init | integer | 0 | [0, 3] |
|
M | logical | FALSE | TRUE, FALSE | - |
max_candidates | integer | 100 | [1, \infty) |
|
min_density | integer | 2 | [1, \infty) |
|
N | integer | 2 | [1, \infty) |
|
num_slots | integer | 1 | [1, \infty) |
|
O | logical | FALSE | TRUE, FALSE | - |
periodic_pruning | integer | 10000 | [1, \infty) |
|
S | integer | 10 | [0, \infty) |
|
t2 | numeric | -1 | (-\infty, \infty) |
|
t1 | numeric | -1.5 | (-\infty, \infty) |
|
V | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustSimpleKMeans
new()
Creates a new instance of this R6 class.
LearnerClustSimpleKMeans$new()
clone()
The objects of this class are cloneable with this method.
LearnerClustSimpleKMeans$clone(deep = FALSE)
deep
Whether to make a deep clone.
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Forgy, W E (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.
Lloyd, P S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information Theory, 28(2), 129–137.
MacQueen, James (1967). “Some methods for classification and analysis of multivariate observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281–297.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
if (requireNamespace("RWeka")) {
learner = mlr3::lrn("clust.SimpleKMeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.