mlr_learners_clust.kkmeans | R Documentation |
A LearnerClust for kernel k-means clustering implemented in kernlab::kkmeans()
.
kernlab::kkmeans()
doesn't have a default value for the number of clusters.
Therefore, the centers
parameter here is set to 2 by default.
Kernel parameters have to be passed directly and not by using the kpar
list in kkmeans
.
The predict method finds the nearest center in kernel distance to
assign clusters for new data points.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
mlr_learners$get("clust.kkmeans") lrn("clust.kkmeans")
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, kernlab
Id | Type | Default | Levels | Range |
centers | untyped | - | - | |
kernel | character | rbfdot | vanilladot, polydot, rbfdot, tanhdot, laplacedot, besseldot, anovadot, splinedot | - |
sigma | numeric | - | [0, \infty) |
|
degree | integer | 3 | [1, \infty) |
|
scale | numeric | 1 | [0, \infty) |
|
offset | numeric | 1 | (-\infty, \infty) |
|
order | integer | 1 | (-\infty, \infty) |
|
alg | character | kkmeans | kkmeans, kerninghan | - |
p | numeric | 1 | (-\infty, \infty) |
|
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustKKMeans
new()
Creates a new instance of this R6 class.
LearnerClustKKMeans$new()
clone()
The objects of this class are cloneable with this method.
LearnerClustKKMeans$clone(deep = FALSE)
deep
Whether to make a deep clone.
Karatzoglou, Alexandros, Smola, Alexandros, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11, 1–20.
Dhillon, S I, Guan, Yuqiang, Kulis, Brian (2004). A unified view of kernel k-means, spectral clustering and graph cuts. Citeseer.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
if (requireNamespace("kernlab")) {
learner = mlr3::lrn("clust.kkmeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.