mlr_learners_clust.MBatchKMeans: Mini Batch K-Means Clustering Learner

mlr_learners_clust.MBatchKMeansR Documentation

Mini Batch K-Means Clustering Learner

Description

A LearnerClust for mini batch k-means clustering implemented in ClusterR::MiniBatchKmeans(). ClusterR::MiniBatchKmeans() doesn't have a default value for the number of clusters. Therefore, the clusters parameter here is set to 2 by default. The predict method uses ClusterR::predict_MBatchKMeans() to compute the cluster memberships for new data. The learner supports both partitional and fuzzy clustering.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.MBatchKMeans")
lrn("clust.MBatchKMeans")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, ClusterR

Parameters

Id Type Default Levels Range
clusters integer 2 [1, \infty)
batch_size integer 10 [1, \infty)
num_init integer 1 [1, \infty)
max_iters integer 100 [1, \infty)
init_fraction numeric 1 [0, 1]
initializer character kmeans++ optimal_init, quantile_init, kmeans++, random -
early_stop_iter integer 10 [1, \infty)
verbose logical FALSE TRUE, FALSE -
CENTROIDS untyped NULL -
tol numeric 1e-04 [0, \infty)
tol_optimal_init numeric 0.3 [0, \infty)
seed integer 1 (-\infty, \infty)

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClustMiniBatchKMeans$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClustMiniBatchKMeans$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Sculley, David (2010). “Web-scale k-means clustering.” In Proceedings of the 19th international conference on World wide web, 1177–1178.

See Also

Other Learner: mlr_learners_clust.SimpleKMeans, mlr_learners_clust.agnes, mlr_learners_clust.ap, mlr_learners_clust.bico, mlr_learners_clust.birch, mlr_learners_clust.cmeans, mlr_learners_clust.cobweb, mlr_learners_clust.dbscan, mlr_learners_clust.dbscan_fpc, mlr_learners_clust.diana, mlr_learners_clust.em, mlr_learners_clust.fanny, mlr_learners_clust.featureless, mlr_learners_clust.ff, mlr_learners_clust.hclust, mlr_learners_clust.hdbscan, mlr_learners_clust.kkmeans, mlr_learners_clust.kmeans, mlr_learners_clust.mclust, mlr_learners_clust.meanshift, mlr_learners_clust.optics, mlr_learners_clust.pam, mlr_learners_clust.xmeans

Examples

if (requireNamespace("ClusterR")) {
  learner = mlr3::lrn("clust.MBatchKMeans")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}

mlr-org/mlr3cluster documentation built on Sept. 13, 2024, 7:07 a.m.