R/LearnerRegrXgboost.R

Defines functions default_values.LearnerRegrXgboost

#' @title Extreme Gradient Boosting Regression Learner
#'
#' @name mlr_learners_regr.xgboost
#'
#' @description
#' eXtreme Gradient Boosting regression.
#' Calls [xgboost::xgb.train()] from package \CRANpkg{xgboost}.
#'
#' To compute on GPUs, you first need to compile \CRANpkg{xgboost} yourself and link
#' against CUDA. See \url{https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support}.
#'
#' Note that using the `watchlist` parameter directly will lead to problems when wrapping this [mlr3::Learner] in a
#' `mlr3pipelines` `GraphLearner` as the preprocessing steps will not be applied to the data in the watchlist.
#' See the section *Early Stopping and Validation* on how to do this.
#'
#' @template note_xgboost
#' @inheritSection mlr_learners_classif.xgboost Early Stopping and Validation
#' @inheritSection mlr_learners_classif.xgboost Initial parameter values
#'
#' @templateVar id regr.xgboost
#' @template learner
#'
#' @references
#' `r format_bib("chen_2016")`
#'
#' @export
#' @template seealso_learner
#' @template example_dontrun
#' @examples
#'
#' \dontrun{
#' # Train learner with early stopping on spam data set
#' task = tsk("mtcars")
#'
#' # use 30 percent for validation
#' # Set early stopping parameter
#' learner = lrn("regr.xgboost",
#'   nrounds = 100,
#'   early_stopping_rounds = 10,
#'   validate = 0.3
#' )
#'
#' # Train learner with early stopping
#' learner$train(task)
#'
#' # Inspect optimal nrounds and validation performance
#' learner$internal_tuned_values
#' learner$internal_valid_scores
#' }
LearnerRegrXgboost = R6Class("LearnerRegrXgboost",
  inherit = LearnerRegr,
  public = list(

    #' @description
    #' Creates a new instance of this [R6][R6::R6Class] class.
    initialize = function() {

      p_nrounds = p_int(1L,
        tags = c("train", "hotstart", "internal_tuning"),
        aggr = crate(function(x) as.integer(ceiling(mean(unlist(x)))), .parent = topenv()),
        in_tune_fn = crate(function(domain, param_vals) {
          if (is.null(param_vals$early_stopping_rounds)) {
            stop("Parameter 'early_stopping_rounds' must be set to use internal tuning.")
          }
          if (is.null(param_vals$eval_metric)) {
            stop("Parameter 'eval_metric' must be set explicitly when using internal tuning.")
          }
          assert_integerish(domain$upper, len = 1L, any.missing = FALSE) }, .parent = topenv()),
        disable_in_tune = list(early_stopping_rounds = NULL)
      )
      ps = ps(
        alpha                       = p_dbl(0, default = 0, tags = "train"),
        approxcontrib               = p_lgl(default = FALSE, tags = "predict"),
        base_score                  = p_dbl(default = 0.5, tags = "train"),
        booster                     = p_fct(c("gbtree", "gblinear", "dart"), default = "gbtree", tags = "train"),
        callbacks                   = p_uty(default = list(), tags = "train"),
        colsample_bylevel           = p_dbl(0, 1, default = 1, tags = "train"),
        colsample_bynode            = p_dbl(0, 1, default = 1, tags = "train"),
        colsample_bytree            = p_dbl(0, 1, default = 1, tags = "train"),
        device                      = p_uty(default = "cpu", tags = "train"),
        disable_default_eval_metric = p_lgl(default = FALSE, tags = "train"),
        early_stopping_rounds       = p_int(1L, default = NULL, special_vals = list(NULL), tags = "train"),
        eta                         = p_dbl(0, 1, default = 0.3, tags = "train"),
        eval_metric                 = p_uty(default = "rmse", tags = "train", custom_check = crate({function(x) check_true(any(is.character(x), is.function(x), inherits(x, "Measure")))})),
        feature_selector            = p_fct(c("cyclic", "shuffle", "random", "greedy", "thrifty"), default = "cyclic", tags = "train", depends = quote(booster == "gblinear")),
        gamma                       = p_dbl(0, default = 0, tags = "train"),
        grow_policy                 = p_fct(c("depthwise", "lossguide"), default = "depthwise", tags = "train", depends = quote(tree_method == "hist")),
        interaction_constraints     = p_uty(tags = "train"),
        iterationrange              = p_uty(tags = "predict"),
        lambda                      = p_dbl(0, default = 1, tags = "train"),
        lambda_bias                 = p_dbl(0, default = 0, tags = "train", depends = quote(booster == "gblinear")),
        max_bin                     = p_int(2L, default = 256L, tags = "train", depends = quote(tree_method == "hist")),
        max_delta_step              = p_dbl(0, default = 0, tags = "train"),
        max_depth                   = p_int(0L, default = 6L, tags = "train"),
        max_leaves                  = p_int(0L, default = 0L, tags = "train", depends = quote(grow_policy == "lossguide")),
        maximize                    = p_lgl(default = NULL, special_vals = list(NULL), tags = "train"),
        min_child_weight            = p_dbl(0, default = 1, tags = "train"),
        missing                     = p_dbl(default = NA, tags = c("train", "predict"), special_vals = list(NA, NA_real_, NULL)),
        monotone_constraints        = p_uty(default = 0, tags = c("train", "control"), custom_check = crate(function(x) { checkmate::check_integerish(x, lower = -1, upper = 1, any.missing = FALSE) })), # nolint
        normalize_type              = p_fct(c("tree", "forest"), default = "tree", tags = "train", depends = quote(booster == "dart")),
        nrounds                     = p_nrounds,
        nthread                     = p_int(1L, default = 1L, tags = c("train", "threads")),
        ntreelimit                  = p_int(1, default = NULL, special_vals = list(NULL), tags = "predict"),
        num_parallel_tree           = p_int(1L, default = 1L, tags = "train"),
        objective                   = p_uty(default = "reg:squarederror", tags = c("train", "predict")),
        one_drop                    = p_lgl(default = FALSE, tags = "train", depends = quote(booster == "dart")),
        outputmargin                = p_lgl(default = FALSE, tags = "predict"),
        predcontrib                 = p_lgl(default = FALSE, tags = "predict"),
        predinteraction             = p_lgl(default = FALSE, tags = "predict"),
        predleaf                    = p_lgl(default = FALSE, tags = "predict"),
        print_every_n               = p_int(1L, default = 1L, tags = "train", depends = quote(verbose == 1L)),
        process_type                = p_fct(c("default", "update"), default = "default", tags = "train"),
        rate_drop                   = p_dbl(0, 1, default = 0, tags = "train", depends = quote(booster == "dart")),
        refresh_leaf                = p_lgl(default = TRUE, tags = "train"),
        reshape                     = p_lgl(default = FALSE, tags = "predict"),
        sampling_method             = p_fct(c("uniform", "gradient_based"), default = "uniform", tags = "train", depends = quote(booster == "gbtree")),
        sample_type                 = p_fct(c("uniform", "weighted"), default = "uniform", tags = "train", depends = quote(booster == "dart")),
        save_name                   = p_uty(default = NULL, tags = "train"),
        save_period                 = p_int(0, default = NULL, special_vals = list(NULL), tags = "train"),
        scale_pos_weight            = p_dbl(default = 1, tags = "train"),
        seed_per_iteration          = p_lgl(default = FALSE, tags = "train"),
        skip_drop                   = p_dbl(0, 1, default = 0, tags = "train", depends = quote(booster == "dart")),
        strict_shape                = p_lgl(default = FALSE, tags = "predict"),
        subsample                   = p_dbl(0, 1, default = 1, tags = "train"),
        top_k                       = p_int(0, default = 0, tags = "train", depends = quote(booster == "gblinear" && feature_selector %in% c("greedy", "thrifty"))),
        training                    = p_lgl(default = FALSE, tags = "predict"),
        tree_method                 = p_fct(c("auto", "exact", "approx", "hist", "gpu_hist"), default = "auto", tags = "train", depends = quote(booster %in% c("gbtree", "dart"))),
        tweedie_variance_power      = p_dbl(1, 2, default = 1.5, tags = "train", depends = quote(objective == "reg:tweedie")),
        updater                     = p_uty(tags = "train"), # Default depends on the selected booster
        verbose                     = p_int(0L, 2L, default = 1L, tags = "train"),
        watchlist                   = p_uty(default = NULL, tags = "train"),
        xgb_model                   = p_uty(default = NULL, tags = "train")
      )
      # param deps

      # custom defaults
      ps$set_values(nrounds = 1000L, nthread = 1L, verbose = 0L)

      super$initialize(
        id = "regr.xgboost",
        param_set = ps,
        feature_types = c("logical", "integer", "numeric"),
        properties = c("weights", "missings", "importance", "hotstart_forward", "internal_tuning", "validation", "offset"),
        packages = c("mlr3learners", "xgboost"),
        label = "Extreme Gradient Boosting",
        man = "mlr3learners::mlr_learners_regr.xgboost"
      )
    },

    #' @description
    #' The importance scores are calculated with [xgboost::xgb.importance()].
    #'
    #' @return Named `numeric()`.
    importance = function() {
      if (is.null(self$model)) {
        stopf("No model stored")
      }

      imp = xgboost::xgb.importance(
        model = self$model
      )
      set_names(imp$Gain, imp$Feature)
    }
  ),

  active = list(
    #' @field internal_valid_scores (named `list()` or `NULL`)
    #' The validation scores extracted from `model$evaluation_log`.
    #' If early stopping is activated, this contains the validation scores of the model for the optimal `nrounds`,
    #' otherwise the `nrounds` for the final model.
    internal_valid_scores = function() {
      self$state$internal_valid_scores
    },
    #' @field internal_tuned_values (named `list()` or `NULL`)
    #' If early stopping is activated, this returns a list with `nrounds`,
    #' which is extracted from `$best_iteration` of the model and otherwise `NULL`.
    internal_tuned_values = function() {
      self$state$internal_tuned_values
    },
    #' @field validate (`numeric(1)` or `character(1)` or `NULL`)
    #' How to construct the internal validation data. This parameter can be either `NULL`,
    #' a ratio, `"test"`, or `"predefined"`.
    validate = function(rhs) {
      if (!missing(rhs)) {
        private$.validate = assert_validate(rhs)
      }
      private$.validate
    }
  ),

  private = list(
    .validate = NULL,
    .train = function(task) {

      pv = self$param_set$get_values(tags = "train")

      if (is.null(pv$objective)) {
        pv$objective = "reg:squarederror"
      }

      data = task$data(cols = task$feature_names)
      target = task$data(cols = task$target_names)

      xgb_data = xgboost::xgb.DMatrix(data = as_numeric_matrix(data), label = data.matrix(target))

      if ("weights" %in% task$properties) {
        xgboost::setinfo(xgb_data, "weight", task$weights$weight)
      }

      if ("offset" %in% task$properties) {
        xgboost::setinfo(xgb_data, "base_margin", task$offset$offset)
      }

      # the last element in the watchlist is used as the early stopping set
      internal_valid_task = task$internal_valid_task
      if (!is.null(pv$early_stopping_rounds) && is.null(internal_valid_task)) {
        stopf("Learner (%s): Configure field 'validate' to enable early stopping.", self$id)
      }
      if (!is.null(internal_valid_task)) {
        valid_data = internal_valid_task$data(cols = task$feature_names)
        valid_target = internal_valid_task$data(cols = task$target_names)

        xgb_valid_data = xgboost::xgb.DMatrix(data = as_numeric_matrix(valid_data), label = data.matrix(valid_target))

        if ("weights" %in% internal_valid_task$properties) {
          xgboost::setinfo(xgb_valid_data, "weight", internal_valid_task$weights$weight)
        }

        if ("offset" %in% internal_valid_task$properties) {
          xgboost::setinfo(xgb_valid_data, "base_margin", internal_valid_task$offset$offset)
        }

        pv$watchlist = c(pv$watchlist, list(test = xgb_valid_data))
      }

      # set internal validation measure
      if (inherits(pv$eval_metric, "Measure")) {
        measure = pv$eval_metric

        if (pv$objective %nin% c("reg:absoluteerror", "reg:squarederror")) {
          stop("Only 'reg:squarederror' and 'reg:absoluteerror' objectives are supported.")
        }

        pv$eval_metric =  mlr3misc::crate({function(pred, dtrain) {
          truth = xgboost::getinfo(dtrain, "label")
          scores = measure$fun(truth, pred)
          list(metric = measure$id, value = scores)
          }}, measure)

        pv$maximize = !measure$minimize
      }

      invoke(xgboost::xgb.train, data = xgb_data, .args = pv)
    },
    #' Returns the `$best_iteration` when early stopping is activated.
    .predict = function(task) {
      pv = self$param_set$get_values(tags = "predict")
      model = self$model
      newdata = as_numeric_matrix(ordered_features(task, self))

      response = invoke(predict, model, newdata = newdata, .args = pv)

      list(response = response)
    },

    .hotstart = function(task) {
      model = self$model
      pars = self$param_set$get_values(tags = "train")
      pars_train = self$state$param_vals
      if (!is.null(pars_train$early_stopping_rounds)) {
        stopf("The parameter `early_stopping_rounds` is set. Early stopping and hotstarting are incompatible.")
      }

      # Calculate additional boosting iterations
      # niter in model and nrounds in ps should be equal after train and continue
      pars$nrounds = pars$nrounds - pars_train$nrounds

      # Construct data
      data = task$data(cols = task$feature_names)
      target = task$data(cols = task$target_names)
      data = xgboost::xgb.DMatrix(data = as_numeric_matrix(data), label = data.matrix(target))

      invoke(xgboost::xgb.train, data = data, xgb_model = model, .args = pars)
    },

    .extract_internal_tuned_values = function() {
      if (is.null(self$state$param_vals$early_stopping_rounds)) {
        return(NULL)
      }
      list(nrounds = self$model$best_iteration)
    },

    .extract_internal_valid_scores = function() {
      if (is.null(self$model$evaluation_log)) {
        return(named_list())
      }
      iter = if (!is.null(self$model$best_iteration)) self$model$best_iteration else self$model$niter
      as.list(self$model$evaluation_log[
        iter,
        set_names(get(".SD"), gsub("^test_", "", colnames(get(".SD")))),
        .SDcols = patterns("^test_")
      ])
    }
  )
)

#' @export
default_values.LearnerRegrXgboost = function(x, search_space, task, ...) { # nolint
  special_defaults = list(
    nrounds = 1L
  )
  defaults = insert_named(default_values(x$param_set), special_defaults)
  defaults[search_space$ids()]
}


#' @include aaa.R
learners[["regr.xgboost"]] = LearnerRegrXgboost
mlr-org/mlr3learners documentation built on Feb. 16, 2025, 9:34 a.m.