#' @title Create Batch Tuning Callback
#'
#' @description
#' Specialized [bbotk::CallbackBatch] for batch tuning.
#' Callbacks allow to customize the behavior of processes in mlr3tuning.
#' The [callback_batch_tuning()] function creates a [CallbackBatchTuning].
#' Predefined callbacks are stored in the [dictionary][mlr3misc::Dictionary] [mlr_callbacks] and can be retrieved with [clbk()].
#' For more information on tuning callbacks see [callback_batch_tuning()].
#'
#' @export
#' @examples
#' # write archive to disk
#' callback_batch_tuning("mlr3tuning.backup",
#' on_optimization_end = function(callback, context) {
#' saveRDS(context$instance$archive, "archive.rds")
#' }
#' )
CallbackBatchTuning= R6Class("CallbackBatchTuning",
inherit = CallbackBatch,
public = list(
#' @field on_eval_after_design (`function()`)\cr
#' Stage called after design is created.
#' Called in `ObjectiveTuningBatch$eval_many()`.
on_eval_after_design = NULL,
#' @field on_resample_begin (`function()`)\cr
#' Stage called at the beginning of an evaluation.
#' Called in `workhorse()` (internal).
on_resample_begin = NULL,
#' @field on_resample_before_train (`function()`)\cr
#' Stage called before training the learner.
#' Called in `workhorse()` (internal).
on_resample_before_train = NULL,
#' @field on_resample_before_predict (`function()`)\cr
#' Stage called before predicting.
#' Called in `workhorse()` (internal).
on_resample_before_predict = NULL,
#' @field on_resample_end (`function()`)\cr
#' Stage called at the end of an evaluation.
#' Called in `workhorse()` (internal).
on_resample_end = NULL,
#' @field on_eval_after_benchmark (`function()`)\cr
#' Stage called after hyperparameter configurations are evaluated.
#' Called in `ObjectiveTuningBatch$eval_many()`.
on_eval_after_benchmark = NULL,
#' @field on_eval_before_archive (`function()`)\cr
#' Stage called before performance values are written to the archive.
#' Called in `ObjectiveTuningBatch$eval_many()`.
on_eval_before_archive = NULL,
#' @field on_tuning_result_begin (`function()`)\cr
#' Stage called before the results are written.
#' Called in `TuningInstance*$assign_result()`.
on_tuning_result_begin = NULL
)
)
#' @title Create Batch Tuning Callback
#'
#' @description
#' Function to create a [CallbackBatchTuning].
#' Predefined callbacks are stored in the [dictionary][mlr3misc::Dictionary] [mlr_callbacks] and can be retrieved with [clbk()].
#'
#' Tuning callbacks can be called from different stages of the tuning process.
#' The stages are prefixed with `on_*`.
#'
#' ```
#' Start Tuning
#' - on_optimization_begin
#' Start Tuner Batch
#' - on_optimizer_before_eval
#' Start Evaluation
#' - on_eval_after_design
#' Start Resampling Iteration
#' - on_resample_begin
#' - on_resample_before_train
#' - on_resample_before_predict
#' - on_resample_end
#' End Resampling Iteration
#' - on_eval_after_benchmark
#' - on_eval_before_archive
#' End Evaluation
#' - on_optimizer_after_eval
#' End Tuner Batch
#' - on_tuning_result_begin
#' - on_result_begin
#' - on_result_end
#' - on_optimization_end
#' End Tuning
#' ```
#'
#' See also the section on parameters for more information on the stages.
#' A tuning callback works with [ContextBatchTuning] and [mlr3::ContextResample].
#'
#' @details
#' When implementing a callback, each function must have two arguments named `callback` and `context`.
#' A callback can write data to the state (`$state`), e.g. settings that affect the callback itself.
#' Tuning callbacks access [ContextBatchTuning].
#'
#' @param id (`character(1)`)\cr
#' Identifier for the new instance.
#' @param label (`character(1)`)\cr
#' Label for the new instance.
#' @param man (`character(1)`)\cr
#' String in the format `[pkg]::[topic]` pointing to a manual page for this object.
#' The referenced help package can be opened via method `$help()`.
#'
#' @param on_optimization_begin (`function()`)\cr
#' Stage called at the beginning of the optimization.
#' Called in `Optimizer$optimize()`.
#' The functions must have two arguments named `callback` and `context`.
#' @param on_optimizer_before_eval (`function()`)\cr
#' Stage called after the optimizer proposes points.
#' Called in `OptimInstance$eval_batch()`.
#' The functions must have two arguments named `callback` and `context`.
#' The argument of `$eval_batch(xdt)` is available in `context`.
#' @param on_eval_after_design (`function()`)\cr
#' Stage called after the design is created.
#' Called in `ObjectiveTuningBatch$eval_many()`.
#' The functions must have two arguments named `callback` and `context`.
#' The arguments of `$eval_many(xss, resampling)` are available in `context`.
#' Additionally, the `design` is available in `context`.
#' @param on_resample_begin (`function()`)\cr
#' Stage called at the beginning of a resampling iteration.
#' Called in `workhorse()` (internal).
#' See also [mlr3::callback_resample()].
#' The functions must have two arguments named `callback` and `context`.
#' @param on_resample_before_train (`function()`)\cr
#' Stage called before training the learner.
#' Called in `workhorse()` (internal).
#' See also [mlr3::callback_resample()].
#' The functions must have two arguments named `callback` and `context`.
#' @param on_resample_before_predict (`function()`)\cr
#' Stage called before predicting.
#' Called in `workhorse()` (internal).
#' See also [mlr3::callback_resample()].
#' The functions must have two arguments named `callback` and `context`.
#' @param on_resample_end (`function()`)\cr
#' Stage called at the end of a resampling iteration.
#' Called in `workhorse()` (internal).
#' See also [mlr3::callback_resample()].
#' The functions must have two arguments named `callback` and `context`.
#' @param on_eval_after_benchmark (`function()`)\cr
#' Stage called after hyperparameter configurations are evaluated.
#' Called in `ObjectiveTuningBatch$eval_many()`.
#' The functions must have two arguments named `callback` and `context`.
#' The `benchmark_result` is available in `context`.
#' @param on_eval_before_archive (`function()`)\cr
#' Stage called before performance values are written to the archive.
#' Called in `ObjectiveTuningBatch$eval_many()`.
#' The functions must have two arguments named `callback` and `context`.
#' The `aggregated_performance` is available in `context`.
#' @param on_optimizer_after_eval (`function()`)\cr
#' Stage called after points are evaluated.
#' Called in `OptimInstance$eval_batch()`.
#' The functions must have two arguments named `callback` and `context`.
#' The new configurations and performances in `instance$archive` are available in `context`.
#' @param on_tuning_result_begin (`function()`)\cr
#' Stage called at the beginning of the result writing.
#' Called in `TuningInstanceBatch$assign_result()`.
#' The functions must have two arguments named `callback` and `context`.
#' The arguments of `$assign_result(xdt, y, learner_param_vals, extra)` are available in `context`.
#' @param on_result_begin (`function()`)\cr
#' Stage called at the beginning of the result writing.
#' Called in `OptimInstance$assign_result()`.
#' The functions must have two arguments named `callback` and `context`.
#' The arguments of `$assign_result(xdt, y, extra)` are available in `context`.
#' @param on_result_end (`function()`)\cr
#' Stage called after the result is written.
#' Called in `OptimInstance$assign_result()`.
#' The functions must have two arguments named `callback` and `context`.
#' The final result `instance$result` is available in `context`.
#' @param on_result (`function()`)\cr
#' Deprecated.
#' Use `on_result_end` instead.
#' Stage called after the result is written.
#' Called in `OptimInstance$assign_result()`.
#' The functions must have two arguments named `callback` and `context`.
#' @param on_optimization_end (`function()`)\cr
#' Stage called at the end of the optimization.
#' Called in `Optimizer$optimize()`.
#' The functions must have two arguments named `callback` and `context`.
#'
#' @export
#' @inherit CallbackBatchTuning examples
callback_batch_tuning = function(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_resample_begin = NULL,
on_resample_before_train = NULL,
on_resample_before_predict = NULL,
on_resample_end = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_tuning_result_begin = NULL,
on_result_begin = NULL,
on_result_end = NULL,
on_result = NULL,
on_optimization_end = NULL
) {
stages = discard(set_names(list(
on_optimization_begin,
on_optimizer_before_eval,
on_eval_after_design,
on_resample_begin,
on_resample_before_train,
on_resample_before_predict,
on_resample_end,
on_eval_after_benchmark,
on_eval_before_archive,
on_optimizer_after_eval,
on_tuning_result_begin,
on_result_begin,
on_result_end,
on_result,
on_optimization_end),
c(
"on_optimization_begin",
"on_optimizer_before_eval",
"on_eval_after_design",
"on_resample_begin",
"on_resample_before_train",
"on_resample_before_predict",
"on_resample_end",
"on_eval_after_benchmark",
"on_eval_before_archive",
"on_optimizer_after_eval",
"on_tuning_result_begin",
"on_result_begin",
"on_result_end",
"on_result",
"on_optimization_end")), is.null)
if ("on_result" %in% names(stages)) {
.Deprecated(old = "on_result", new = "on_result_end")
stages$on_result_end = stages$on_result
stages$on_result = NULL
}
walk(stages, function(stage) assert_function(stage, args = c("callback", "context")))
callback = CallbackBatchTuning$new(id, label, man)
iwalk(stages, function(stage, name) callback[[name]] = stage)
callback
}
#' @title Assertions for Callbacks
#'
#' @description
#' Assertions for [CallbackBatchTuning] class.
#'
#' @param callback ([CallbackBatchTuning]).
#' @param null_ok (`logical(1)`)\cr
#' If `TRUE`, `NULL` is allowed.
#'
#' @return [CallbackBatchTuning | List of [CallbackBatchTuning]s.
#' @export
assert_batch_tuning_callback = function(callback, null_ok = FALSE) {
if (null_ok && is.null(callback)) return(invisible(NULL))
assert_class(callback, "CallbackBatchTuning")
invisible(callback)
}
#' @export
#' @param callbacks (list of [CallbackBatchTuning]).
#' @rdname assert_batch_tuning_callback
assert_batch_tuning_callbacks = function(callbacks) {
invisible(lapply(callbacks, assert_callback))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.