test_that("ArchiveAsyncTuning access methods work", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
expect_benchmark_result(instance$archive$benchmark_result)
tuner = tnr("async_random_search")
tuner$optimize(instance)
# benchmark result
expect_benchmark_result(instance$archive$benchmark_result)
expect_gte(instance$archive$benchmark_result$n_resample_results, 20L)
expect_null(instance$archive$resample_result(1)$learners[[1]]$model)
# learner
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_learner(instance$archive$learner(i = i))
})
# learner param values
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_list(instance$archive$learner_param_vals(i))
expect_names(names(instance$archive$learner_param_vals(i)), permutation.of = c("xval", "cp"))
})
# learners
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_list(instance$archive$learners(i))
expect_learner(instance$archive$learners(i)[[1]])
})
# predictions
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_list(instance$archive$predictions(i))
expect_prediction(instance$archive$predictions(i)[[1]])
})
# resample result
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_resample_result(instance$archive$resample_result(i))
})
expect_rush_reset(instance$rush, type = "kill")
})
test_that("ArchiveAsyncTuning as.data.table function works", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
# default
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors"))
# extra measure
tab = as.data.table(instance$archive, measures = msr("classif.acc"))
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors", "classif.acc"))
# extra measures
tab = as.data.table(instance$archive, measures = msrs(c("classif.acc", "classif.mcc")))
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors", "classif.acc", "classif.mcc"))
# exclude column
tab = as.data.table(instance$archive, exclude_columns = "timestamp_xs")
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_ys", "pid", "keys", "warnings", "errors"))
# exclude columns
tab = as.data.table(instance$archive, exclude_columns = c("timestamp_xs", "resample_result"))
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "timestamp_ys", "pid", "keys", "warnings", "errors"))
# no exclude
tab = as.data.table(instance$archive, exclude_columns = NULL)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors"))
# no unnest
tab = as.data.table(instance$archive, unnest = NULL)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "x_domain", "keys", "warnings", "errors"))
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncTuning as.data.table function works without resample result", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "cp", "classif.ce", "x_domain", "runtime_learners", "worker_id", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors"))
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncTuning as.data.table function works with empty archive", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE
)
expect_data_table(as.data.table(instance$archive), nrows = 0, ncols = 0)
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncTuning as.data.table function works with new ids in x_domain", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
search_space = ps(
x1 = p_int(1, 12),
x2 = p_dbl(0.01, 0.1),
.extra_trafo = function(x, param_set) {
x$minsplit = x$x1
x$cp = x$x2
x$x1 = NULL
x$x2 = NULL
x
}
)
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE,
search_space = search_space
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "x1", "x2", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors"))
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncTuning as.data.table function works with switched new ids in x_domain", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
# new ids in x_domain switch
search_space = ps(
x1 = p_int(1, 12),
x2 = p_dbl(0.01, 0.1),
.extra_trafo = function(x, param_set) {
if (x$x1 > 3) x$minsplit = x$x1
x$cp = x$x2
x$x1 = NULL
x$x2 = NULL
x
}
)
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE,
search_space = search_space
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), permutation.of = c("state", "x1", "x2", "classif.ce", "x_domain", "runtime_learners", "worker_id", "resample_result", "timestamp_xs", "timestamp_ys", "pid", "keys", "warnings", "errors"))
expect_rush_reset(instance$rush)
})
test_that("Saving ArchiveAsyncTuning works", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
file.remove("instance.rds")
})
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
saveRDS(instance, file = "instance.rds")
loaded_instance = readRDS(file = "instance.rds")
loaded_instance$reconnect()
expect_class(loaded_instance, "TuningInstanceAsyncSingleCrit")
})
# Internal Tuning --------------------------------------------------------------
test_that("ArchiveAsyncTuning as.data.table function works internally tuned values", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
rush::rush_plan(n_workers = 2)
instance = ti_async(
task = tsk("pima"),
learner = lrn("classif.debug", validate = 0.2, early_stopping = TRUE, iter = to_tune(upper = 1000, internal = TRUE, aggr = function(x) 99),
x = to_tune(0.1, 0.3)),
resampling = rsmp("holdout"),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 2)
)
tuner = tnr("async_random_search")
tuner$optimize(instance)
tab = as.data.table(instance$archive, unnest = "x_domain")
expect_list(tab$internal_tuned_values, min.len = 2, types = "list")
expect_equal(tab$internal_tuned_values[[1]], set_class(list(iter = 99L), "internal_tuned_values"))
tab = as.data.table(instance$archive)
expect_names(names(tab), must.include = "internal_tuned_values_iter")
expect_equal(tab$internal_tuned_values_iter[1], 99)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.