test_that("objective async works", {
objective = ObjectiveTuningAsync$new(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
store_models = FALSE,
store_benchmark_result = FALSE
)
xs = list("cp" = 0.01)
y = objective$eval(xs)
expect_names(names(y), permutation.of = c("classif.ce", "runtime_learners", "warnings", "errors"))
expect_number(y$classif.ce)
expect_number(y$runtime_learners)
expect_number(y$warnings)
expect_number(y$errors)
})
test_that("store benchmark result works", {
objective = ObjectiveTuningAsync$new(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
store_models = FALSE,
store_benchmark_result = TRUE
)
xs = list("cp" = 0.01)
y = objective$eval(xs)
expect_names(names(y), permutation.of = c("classif.ce", "runtime_learners", "resample_result", "warnings", "errors"))
expect_number(y$classif.ce)
expect_number(y$runtime_learners)
expect_resample_result(y$resample_result[[1]])
expect_null(y$resample_result[[1]]$learners[[1]]$model)
expect_number(y$warnings)
expect_number(y$errors)
})
test_that("store models works", {
objective = ObjectiveTuningAsync$new(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
store_models = TRUE,
store_benchmark_result = TRUE
)
xs = list("cp" = 0.01)
y = objective$eval(xs)
expect_names(names(y), permutation.of = c("classif.ce", "runtime_learners", "resample_result", "warnings", "errors"))
expect_number(y$classif.ce)
expect_number(y$runtime_learners)
expect_resample_result(y$resample_result[[1]])
expect_class(y$resample_result[[1]]$learners[[1]]$model, "rpart")
expect_number(y$warnings)
expect_number(y$errors)
})
test_that("rush objective with multiple measures works", {
objective = ObjectiveTuningAsync$new(
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)),
resampling = rsmp("cv", folds = 3),
measures = msrs(c("classif.ce", "classif.acc")),
store_models = FALSE,
store_benchmark_result = FALSE
)
xs = list("cp" = 0.01)
y = objective$eval(xs)
expect_names(names(y), permutation.of = c("classif.ce", "classif.acc", "runtime_learners", "warnings", "errors"))
expect_number(y$classif.ce)
expect_number(y$classif.acc)
expect_number(y$runtime_learners)
expect_number(y$warnings)
expect_number(y$errors)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.