#' @title Boosted Generalized Linear Regression Learner
#'
#' @name mlr_learners_regr.glmboost
#'
#' @description
#' Boosted generalized linear regression learner.
#' Calls [mboost::glmboost()] from package \CRANpkg{mboost}.
#'
#' @templateVar id regr.glmboost
#' @template section_dictionary_learner
#'
#' @references
#' \cite{mlr3learners.mboost}{buhlmann_2003}
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerRegrGLMBoost = R6Class("LearnerRegrGLMBoost",
inherit = LearnerRegr,
public = list(
#' @description
#' Create a `LearnerRegrGLMBoost` object.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamDbl$new(
id = "offset", default = NULL, special_vals = list(NULL),
tags = "train"),
ParamFct$new(
id = "family", default = c("Gaussian"),
levels = c(
"Gaussian", "Laplace", "Huber", "Poisson",
"GammaReg", "NBinomial", "Hurdle"), tags = "train"),
ParamUty$new(id = "nuirange", default = c(0, 100), tags = "train"),
ParamDbl$new(
id = "d", default = NULL, special_vals = list(NULL),
tags = "train"),
ParamLgl$new(id = "center", default = TRUE, tags = "train"),
ParamInt$new(id = "mstop", default = 100, tags = "train"),
ParamDbl$new(id = "nu", default = 0.1, tags = "train"),
ParamFct$new(
id = "risk", default = "inbag",
levels = c("inbag", "oobag", "none"), tags = "train"),
ParamUty$new(id = "oobweights", default = NULL, tags = "train"),
ParamLgl$new(id = "trace", default = FALSE, tags = "train"),
ParamUty$new(id = "stopintern", default = FALSE, tags = "train"),
ParamUty$new(id = "na.action", default = na.omit, tags = "train"),
ParamUty$new(id = "contrasts.arg", tags = "train")
)
)
ps$add_dep("oobweights", "risk", CondEqual$new("oobag"))
super$initialize(
id = "regr.glmboost",
packages = "mboost",
feature_types = c("integer", "numeric", "factor", "ordered"),
predict_types = c("response"),
param_set = ps,
properties = "weights",
man = "mlr3learners.mboost::mlr_learners_regr.glmboost"
)
}
),
private = list(
.train = function(task) {
# Set to default for switch
if (is.null(self$param_set$values$family)) {
self$param_set$values = insert_named(
self$param_set$values,
list(family = "Gaussian"))
}
pars = self$param_set$get_values(tags = "train")
pars_boost = pars[which(names(pars) %in%
formalArgs(mboost::boost_control))]
pars_glmboost = pars[which(names(pars) %in%
formalArgs(mboost::gamboost))]
pars_family = pars[which(names(pars) %in%
formalArgs(getFromNamespace(
pars_glmboost$family,
asNamespace("mboost"))))]
f = task$formula()
data = task$data()
if ("weights" %in% task$properties) {
pars_glmboost = insert_named(
pars_glmboost,
list(weights = task$weights$weight))
}
pars_glmboost$family = switch(pars$family,
Gaussian = mboost::Gaussian(),
Laplace = mboost::Laplace(),
Huber = invoke(mboost::Huber, .args = pars_family),
Poisson = mboost::Poisson(),
GammaReg = invoke(mboost::GammaReg, .args = pars_family),
NBinomial = invoke(mboost::NBinomial, .args = pars_family),
Hurdle = invoke(mboost::Hurdle, .args = pars_family)
)
ctrl = invoke(mboost::boost_control, .args = pars_boost)
invoke(mboost::glmboost, f,
data = data, control = ctrl,
.args = pars_glmboost)
},
.predict = function(task) {
newdata = task$data(cols = task$feature_names)
p = invoke(predict, self$model, newdata = newdata, type = "response")
PredictionRegr$new(task = task, response = p)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.