#' @title Regression Conditional Inference Tree Learner
#'
#' @name mlr_learners_regr.ctree
#'
#' @description
#' Regression conditional inference tree learner.
#' Calls [partykit::ctree()] from package \CRANpkg{partykit}.
#'
#' @templateVar id regr.ctree
#' @template section_dictionary_learner
#'
#' @references
#' \cite{mlr3learners.partykit}{partykit1}
#' \cite{mlr3learners.partykit}{partykit2}
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerRegrCTree = R6Class("LearnerRegrCTree",
inherit = LearnerRegr,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamFct$new("teststat", levels = c("quadratic", "maximum"),
default = "quadratic", tags = "train"),
ParamFct$new("splitstat", levels = c("quadratic", "maximum"),
default = "quadratic", tags = "train"),
ParamLgl$new("splittest", default = FALSE, tags = "train"),
ParamFct$new("testtype", levels = c("Bonferroni", "MonteCarlo",
"Univariate", "Teststatistic"), default = "Bonferroni",
tags = "train"),
ParamUty$new("nmax", tags = "train"),
ParamDbl$new("alpha", lower = 0, upper = 1, default = 0.05,
tags = "train"),
ParamDbl$new("mincriterion", lower = 0, upper = 1, default = 0.95,
tags = "train"),
ParamDbl$new("logmincriterion", tags = "train"),
ParamInt$new("minsplit", lower = 1L, default = 20L, tags = "train"),
ParamInt$new("minbucket", lower = 1L, default = 7L, tags = "train"),
ParamDbl$new("minprob", lower = 0, default = 0.01, tags = "train"),
ParamLgl$new("stump", default = FALSE, tags = "train"),
ParamLgl$new("lookahead", default = FALSE, tags = "train"),
ParamLgl$new("MIA", default = FALSE, tags = "train"),
ParamInt$new("nresample", lower = 1L, default = 9999L,
tags = "train"),
ParamDbl$new("tol", lower = 0, tags = "train"),
ParamInt$new("maxsurrogate", lower = 0L, default = 0L,
tags = "train"),
ParamLgl$new("numsurrogate", default = FALSE, tags = "train"),
ParamInt$new("mtry", lower = 0L, special_vals = list(Inf),
default = Inf, tags = "train"),
ParamInt$new("maxdepth", lower = 0L, special_vals = list(Inf),
default = Inf, tags = "train"),
ParamLgl$new("multiway", default = FALSE, tags = "train"),
ParamInt$new("splittry", lower = 0L, default = 2L, tags = "train"),
ParamLgl$new("intersplit", default = FALSE, tags = "train"),
ParamLgl$new("majority", default = FALSE, tags = "train"),
ParamLgl$new("caseweights", default = FALSE, tags = "train"),
ParamUty$new("applyfun", tags = "train"),
ParamInt$new("cores", special_vals = list(NULL), default = NULL,
tags = "train"),
ParamLgl$new("saveinfo", default = TRUE, tags = "train"),
ParamLgl$new("update", default = FALSE, tags = "train"),
ParamFct$new("splitflavour", default = "ctree",
levels = c("ctree", "exhaustive"), tags = c("train", "control")),
ParamUty$new("offset", tags = "train"),
ParamUty$new("cluster", tags = "train"),
ParamUty$new("scores", tags = "train"),
ParamLgl$new("doFit", default = TRUE, tags = "train"),
ParamUty$new("pargs", default = mvtnorm::GenzBretz, tags = "train")
)
)
ps$add_dep("nresample", "testtype", CondEqual$new("MonteCarlo"))
super$initialize(
id = "regr.ctree",
packages = "partykit",
feature_types = c("integer", "numeric", "factor", "ordered"),
predict_types = "response",
param_set = ps,
properties = "weights",
man = "mlr3learners.partykit::mlr_learners_regr.ctree"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tags = "train")
if ("weights" %in% task$properties) {
pars$weights = task$weights$weight
}
mlr3misc::invoke(partykit::ctree, formula = task$formula(),
data = task$data(), .args = pars)
},
.predict = function(task) {
newdata = task$data(cols = task$feature_names)
p = mlr3misc::invoke(predict, self$model, newdata = newdata)
PredictionRegr$new(task = task, response = p)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.