#' @title Density Penalized Learner
#'
#' @name mlr_learners_dens.pen
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing penalized estimation from package
#' \CRANpkg{pendensity}.
#' Calls [pendensity::pendensity()].
#'
#' @templateVar id dens.pen
#' @template section_dictionary_learner
#'
#' @references
#' Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
#' Computational Statistics 27 (4), p. 757-777.
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensPenalized = R6Class("LearnerDensPenalized",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamFct$new(
id = "base", default = "bspline",
levels = c("bspline", "gaussian"), tags = "train"),
ParamDbl$new(id = "no.base", default = 41, tags = "train"),
ParamDbl$new(id = "max.iter", default = 20, tags = "train"),
ParamDbl$new(id = "lambda0", default = 500, tags = "train"),
ParamDbl$new(id = "q", default = 3, tags = "train"),
ParamLgl$new(id = "sort", default = TRUE, tags = "train"),
ParamUty$new(id = "with.border", tags = "train"),
ParamDbl$new(id = "m", default = 3, tags = "train"),
ParamDbl$new(id = "eps", default = 0.01, tags = "train")
)
)
super$initialize(
id = "dens.pen",
packages = "pendensity",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = c("pdf", "cdf"),
param_set = ps,
man = "mlr3learners.pendensity::mlr_learners_dens.pen"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tag = "train")
fit = mlr3misc::invoke(pendensity::pendensity,
form = task$truth() ~ 1,
.args = pars)
pdf = function(x) {} # nolint
body(pdf) = substitute({
mlr3misc::invoke(pendensity::dpendensity,
x = fit,
val = x)
})
cdf = function(x) {} # nolint
body(cdf) = substitute({
mlr3misc::invoke(pendensity::ppendensity,
x = fit,
val = x)
})
base = if (is.null(pars$base)) {
"gaussian"
} else {
pars$base
}
distr6::Distribution$new(
name = paste("Penalized Density", base),
short_name = paste0("PenDens_", base),
pdf = pdf, cdf = cdf, type = set6::Reals$new())
},
.predict = function(task) {
newdata = task$truth()
mlr3proba::PredictionDens$new(task = task,
pdf = self$model$pdf(newdata),
cdf = self$model$pdf(newdata))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.