Description Usage Arguments Details References See Also Examples
View source: R/model_RenshawHaberman.R
The Renshaw-Haberman mortality model is a Lee-Carter model with cohort effects.
1 2 3  | 
data | 
 A data.frame or a matrix containing mortality data 
with ages   | 
x | 
 Numerical vector indicating the ages in input   | 
y | 
 Numerical vector indicating the years in input   | 
link | 
 defines the link function and random component associated with 
the mortality model.   | 
cohortAgeFun | 
 defines the cohort age modulating parameter 
β_x^{(0)}. It can take values:   | 
approxConst | 
 defines if the approximate identifiability constraint of 
Hunt and Villegas (2015) is applied or not. If   | 
radix | 
 Radix.  | 
verbose | 
 A logical value. Set   | 
renshaw2006MortalityForecast
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  | # Data
x  <- 0:89
y  <- 2008:2014
mx <- HMD_male$mx$GBRTENW[paste(x), paste(y)]
# Fit the model
M <- model.RenshawHaberman(data = mx, x = x, y = y)
M
summary(M)
# Check residuals
R <- residuals(M)
plot(R, plotType = "scatter")
plot(R, plotType = "colourmap")
plot(R, plotType = "signplot")
# Forecast
P <- predict(M, h = 5)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.