library(flowWorkspace)
library(flowCore)
library(ImmPortR)
library(dplyr)
library(stringr)
library(openCyto)
library(MetaCyto)
library(ggcyto)
library(kableExtra)
library(plotly)
library(DBI)
source("R/donor_search.r")
source("R/panel_parser.R")
SDY702<- donor_search(study = "SDY702")
SDY1097<- donor_search(study = "SDY1097")
SDY1041<- donor_search(study = "SDY1041")
SDY1389<- donor_search(study = "SDY1389")
immport<- rbind(SDY702,SDY1097,SDY1041,SDY1389)
donormeta<- panel_parser(donorMeta = immport)
df<-donormeta
panels<- donormeta %>% group_by(panel_id, parameters) %>% count(marker_id)
panelid<- unique(panels$panel_id)
fcs<- df %>%
dplyr::filter(panel_id == "FCM-12")
controlfcs<- df %>%
dplyr::filter(panel_id == "FCM-1"|panel_id == "FCM-4"|panel_id == "FCM-8"|panel_id == "FCM-20"|panel_id == "FCM-23"|panel_id == "FCM-24")
fcs<- df %>%
dplyr::filter(panel_id == "FCM-2"|panel_id == "FCM-3"|panel_id == "FCM-5"|panel_id == "FCM-6"|panel_id == "FCM-7"|panel_id == "FCM-29")
ki67 <- df %>%
dplyr::filter(panel_id == "FCM-9"|panel_id == "FCM-10"|panel_id == "FCM-11")
tcr <- df %>%
dplyr::filter(panel_id == "FCM-13"|panel_id == "FCM-14"|panel_id == "FCM-15"||panel_id == "FCM-16"|panel_id == "FCM-17")
treg<- df %>%
dplyr::filter(panel_id == "FCM-18"|panel_id == "FCM-19"|panel_id == "FCM-21"|panel_id == "FCM-22"|panel_id == "FCM-25"|panel_id == "FCM-26")
fcs<- df %>%
dplyr::filter(panel_id == "FCM-2"|panel_id == "FCM-3")
fcs_files<- fcs$fcs_files
cs<- load_cytoset_from_fcs(files = fcs_files)
# link metadata
p<- pData(cs)
m<- cbind(p,fcs)
pData(cs)<- m
# link markers
channels <- colnames(cs)
markers <- as.vector(pData(parameters(cs[[1]]))$desc)
names(markers)<- channels
markernames(cs) <- markers
# Compensate
comps <- lapply(cs, function(cf) spillover(cf)$SPILL)
cs_comp <- compensate(cs, comps)
# FCStransTransform
channels_to_exclude <- c(grep(colnames(cs), pattern="FSC"),
grep(colnames(cs), pattern="SSC"),
grep(colnames(cs), pattern="Time"))
chnls <- colnames(cs)[-channels_to_exclude]
transListtransform <- transformList(chnls, FCSTransTransform(transformationId = "defaultFCSTransTransform", channelrange = 2^18, channeldecade = 4.5, range = 4096, cutoff = -111, w = 0.5, rescale = TRUE)
)
fcstrans<- FCSTransTransform(transformationId = "defaultFCSTransTransform", channelrange = 2^18, channeldecade = 4.5, range = 4096, cutoff = -111, w = 0.5, rescale = TRUE)
transList <- transformList(chnls, fcstrans)
cs_trans<- transform(cs_comp,transList)
save_cytoset(cs_trans, path = "R/cytosets/fcm21")
gs<- GatingSet(cs_trans)
gs_add_gating_method(gs, alias = "nonDebris",
pop = "+",
parent = "root",
dims = "FSC-A",
gating_method = "mindensity",
gating_args = "min = 20000, max=50000",
collapseDataForGating = "TRUE",
groupBy = "biosampleType")
gs_add_gating_method(gs, alias = "singlets",
pop = "+",
parent = "nonDebris",
dims = "FSC-A,FSC-H",
gating_method = "singletGate")
gs_add_gating_method(gs,
pop = "+/-+/-",
parent = "singlets",
dims = "CD3,CD4",
gating_method = "mindensity",
gating_args = "min= 1250, max=2500",
collapseDataForGating = "TRUE",
groupBy = "biosampleType")
save_gs(gs, path = "R/gatingsets/fcm21")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.