library(snow)
library(OPWeight)
library(OPWpaper)
cl <- makeCluster(10, type = "MPI") # start zcluster
clusterExport(cl,"weight_by_delta")
clusterExport(cl,"weight_continuous")
clusterExport(cl,"weight_byEffect_cont")
dat <- read.csv("ranksProb_byEffect_m10000.csv", h = TRUE) # this prob. are saved in an excel file
filterEffectVec <- c(seq(0, 1, .2), 2, 3, 5, 8)
mVal = 10000
del = .000001
aVal = .05
clusterExport(cl,"dat")
clusterExport(cl,"filterEffectVec")
clusterExport(cl,"mVal")
clusterExport(cl,"del")
clusterExport(cl,"aVal")
weightByEffect_null.2 <- parSapply(cl,1:length(filterEffectVec),weight_byEffect_cont,alpha=aVal,null=.2,m=mVal,delInterval=del,filterEffectVec=filterEffectVec, datByNull=dat[,1:10])
weightByEffect_null.5 <- parSapply(cl,1:length(filterEffectVec),weight_byEffect_cont,alpha=aVal,null=.5,m=mVal,delInterval=del,filterEffectVec=filterEffectVec, datByNull=dat[,11:20])
weightByEffect_null.75 <- parSapply(cl,1:length(filterEffectVec),weight_byEffect_cont,alpha=aVal,null=.75,m=mVal,delInterval=del,filterEffectVec=filterEffectVec, datByNull=dat[,21:30])
weightByEffect_null.9 <- parSapply(cl,1:length(filterEffectVec),weight_byEffect_cont,alpha=aVal,null=.9,m=mVal,delInterval=del,filterEffectVec=filterEffectVec, datByNull=dat[,31:40])
weightByEffect_null.99 <- parSapply(cl,1:length(filterEffectVec),weight_byEffect_cont,alpha=aVal,null=.99,m=mVal,delInterval=del,filterEffectVec=filterEffectVec, datByNull=dat[,41:50])
stopCluster(cl)
# # # save data
# # #---------------
# datWeightByEffect <- data.frame(weightByEffect_null.2, weightByEffect_null.5,
# weightByEffect_null.75, weightByEffect_null.9,
# weightByEffect_null.99)
# colNames <- c(paste("null.2_ef",filterEffectVec ,sep=""),paste("null.5_ef",filterEffectVec ,sep=""),paste("null.75_ef",filterEffectVec ,sep=""),
# paste("null.9_ef",filterEffectVec ,sep=""),paste("null.99_ef",filterEffectVec ,sep=""))
# colnames(datWeightByEffect) <- colNames
# write.csv(datWeightByEffect,file="weight_byEffect_cont_m10000.csv",row.names = F)
#
#
# dat = read.csv("weight_byEffect_cont_m10000.csv",h=T)
# weightByEffect = dat[,31:40]
#
# windows()
# m = 10000
# weightByEffect <- weightByEffect_null.9
# apply(weightByEffect, 2, sum)
# par(mfrow = c(3, 3))
# for(i in 1:9)
# {
# w <- weightByEffect[,i]
# ww <- ifelse(rep(sum(w),m) == 0, 1, w/sum(w)*length(w)) # normalizing weight
# plot(1:length(ww), ww, type="l")
# print(sum(ww))
# }
#####################################################################################################################################
save.image("simu_weight_byEffect_cont.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.