1  | 
xy | 
|
x1 | 
|
y1 | 
|
x2 | 
|
y2 | 
|
fr1 | 
|
fr2 | 
|
est | 
|
alpha | 
|
plotit | 
|
pts | 
|
qvals | 
|
sm | 
|
xout | 
|
outfun | 
|
DIF | 
|
LP | 
|
nboot | 
|
SEED | 
|
nmin | 
|
MC | 
|
... | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82  | ##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (xy = NULL, x1 = NULL, y1 = NULL, x2 = NULL, y2 = NULL, 
    fr1 = 1, fr2 = 1, est = tmean, alpha = 0.05, plotit = TRUE, 
    pts = NULL, qvals = c(0.25, 0.5, 0.75), sm = FALSE, xout = FALSE, 
    outfun = out, DIF = FALSE, LP = TRUE, nboot = 500, SEED = TRUE, 
    nmin = 12, MC = FALSE, ...) 
{
    if (!is.null(x1[1])) {
        if (ncol(as.matrix(x1)) > 1) 
            stop("One covariate only is allowed with this function")
        if (length(x1) != length(y1)) 
            stop("x1 and y1 have different lengths")
        if (length(x1) != length(x2)) 
            stop("x1 and y2 have different lengths")
        if (length(x2) != length(y2)) 
            stop("x2 and y2 have different lengths")
        if (length(y1) != length(y2)) 
            stop("y1 and y2 have different lengths")
        xy = elimna(cbind(x1, y1, x2, y2))
    }
    if (is.null(pts)) {
        for (i in 1:length(qvals)) pts = c(pts, qest(xy[, 1], 
            qvals[i]))
    }
    if (SEED) 
        set.seed(2)
    n = nrow(xy)
    est1 = NA
    est2 = NA
    J = length(pts)
    est1 = matrix(NA, nrow = nboot, ncol = J)
    est2 = matrix(NA, nrow = nboot, ncol = J)
    data = matrix(sample(n, size = n * nboot, replace = TRUE), 
        ncol = nboot, nrow = n)
    if (!MC) {
        est1 = apply(data, 2, DancGLOB_sub, xy = xy[, 1:2], pts = pts, 
            est = est, fr = fr1, nmin = nmin, ...)
        est2 = apply(data, 2, DancGLOB_sub, xy = xy[, 3:4], pts = pts, 
            est = est, fr = fr2, nmin = nmin, ...)
        est1 = t(as.matrix(est1))
        est2 = t(as.matrix(est2))
    }
    if (MC) {
        library(parallel)
        data = listm(data)
        est1 = mclapply(data, DancGLOB_sub, xy = xy[, 1:2], pts = pts, 
            est = est, fr = fr1, nmin = nmin, ...)
        est2 = mclapply(data, DancGLOB_sub, xy = xy[, 3:4], pts = pts, 
            est = est, fr = fr2, nmin = nmin, ...)
        est1 = t(matl(est1))
        est2 = t(matl(est2))
    }
    e1 = runhat(xy[, 1], xy[, 2], pts = pts, est = est, fr = fr1, 
        ...)
    e2 = runhat(xy[, 3], xy[, 4], pts = pts, est = est, fr = fr2, 
        ...)
    dif = e1 - e2
    pv = NA
    for (j in 1:J) {
        pv[j] = mean(est1[, j] < est2[, j], na.rm = TRUE) + 0.5 * 
            mean(est1[, j] == est2[, j], na.rm = TRUE)
        pv[j] = 2 * min(c(pv[j], 1 - pv[j]))
    }
    if (plotit) {
        if (xout) {
            flag <- outfun(x1, ...)$keep
            x1 <- x1[flag]
            y1 <- y1[flag]
            flag <- outfun(x2, ...)$keep
            x2 <- x2[flag]
            y2 <- y2[flag]
        }
        runmean2g(xy[, 1], xy[, 2], xy[, 3], xy[, 4], fr = fr1, 
            est = tmean, sm = sm, xout = FALSE, ...)
    }
    pv = min(pv)
    pv
  }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.