| 1 | 
| x | |
| y | |
| est | |
| nboot | |
| alpha | |
| fr | |
| SEED | |
| ... | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (x, y, est = tmean, nboot = 100, alpha = 0.05, fr = NA, 
    SEED = TRUE, ...) 
{
    if (!is.matrix(x)) 
        stop("X values should be stored in a matrix")
    if (ncol(x) == 1) 
        stop("There should be two or more predictors")
    temp <- cbind(x, y)
    p <- ncol(x)
    p1 <- p + 1
    temp <- elimna(temp)
    x <- temp[, 1:p]
    x <- as.matrix(x)
    y <- temp[, p1]
    if (alpha < 0.05 && nboot <= 100) 
        warning("You used alpha<.05 and nboot<=100")
    if (is.na(fr)) {
        fr <- 0.8
        if (ncol(x) == 2) {
            nval <- c(20, 30, 50, 80, 150)
            fval <- c(0.4, 0.36, 0.18, 0.15, 0.09)
            if (length(y) <= 150) 
                fr <- approx(nval, fval, length(y))$y
            if (length(y) > 150) 
                fr <- 0.09
        }
    }
    if (SEED) 
        set.seed(2)
    x <- as.matrix(x)
    mflag <- matrix(NA, nrow = length(y), ncol = length(y))
    for (j in 1:length(y)) {
        for (k in 1:length(y)) {
            mflag[j, k] <- (sum(x[j, ] <= x[k, ]) == ncol(x))
        }
    }
    yhat <- adrunl(x, y, plotit = FALSE, fr = fr, pyhat = T)
    regres <- y - yhat
    print("Taking bootstrap sample, please wait.")
    data <- matrix(runif(length(y) * nboot), nrow = nboot)
    data <- sqrt(12) * (data - 0.5)
    rvalb <- apply(data, 1, adtestls1, yhat, regres, mflag, x, 
        fr)
    rvalb <- rvalb/sqrt(length(y))
    dstatb <- apply(abs(rvalb), 2, max)
    wstatb <- apply(rvalb^2, 2, mean)
    dstatb <- sort(dstatb)
    wstatb <- sort(wstatb)
    v <- c(rep(1, length(y)))
    rval <- adtestls1(v, yhat, regres, mflag, x, fr)
    rval <- rval/sqrt(length(y))
    dstat <- max(abs(rval))
    wstat <- mean(rval^2)
    ib <- round(nboot * (1 - alpha))
    critd <- dstatb[ib]
    critw <- wstatb[ib]
    list(dstat = dstat, wstat = wstat, critd = critd, critw = critw)
  }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.