1 |
x |
|
y |
|
pool |
|
jcen |
|
fr |
|
depfun |
|
nmin |
|
op |
|
tr |
|
pts |
|
SEED |
|
pr |
|
cop |
|
con |
|
nboot |
|
alpha |
|
bhop |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, pool = TRUE, jcen = 1, fr = 1, depfun = fdepth,
nmin = 8, op = 3, tr = 0.2, pts = NULL, SEED = TRUE, pr = TRUE,
cop = 3, con = 0, nboot = NA, alpha = 0.05, bhop = FALSE)
{
library(MASS)
output <- NULL
if (SEED)
set.seed(2)
if (pr) {
if (op == 1)
print("Trimmed means are to be compared. For medians, use op=2")
if (op == 2)
print("Medians are to be compared. For trimmed means, use op=1")
if (op == 3)
print("trimmed means are compared. For medians, use op=4")
if (op == 4)
print("medians are compared. For trimmed means, use op=3")
}
nval <- NA
if (is.matrix(y))
J <- ncol(y)
if (is.list(y))
J <- length(y)
if (is.list(x))
pval <- ncol(x[[1]])
if (J == 1)
stop("Only have one group stored in y")
if (pval == 1)
stop("For one covariate only, using ancgm1")
if (is.matrix(x)) {
if (ncol(x)%%J != 0)
stop("Number of columns of x should be a multiple of ncol(y)")
}
if (is.matrix(x)) {
pval <- ncol(x)/J
if (pval == 1)
stop("For one covariate only, using ancgm1")
temp <- seq(1, ncol(x), pval)
js <- temp[jcen]
jcenp <- js + pval - 1
if (jcenp > ncol(x))
stop("jcen has an invalid value")
xcen <- x[, js:jcenp]
}
if (is.list(x))
xcen <- x[[jcen]]
if (pool) {
if (is.matrix(x))
xval <- stackit(x, pval)
if (is.list(x))
xval <- stacklist(x)
mval <- cov.mve(xval)
if (is.null(pts))
pts <- ancdes(xval, depfun = depfun, cop = cop)
}
if (!pool) {
if (is.null(pts))
pts <- ancdes(xcen, depfun = depfun, cop = cop)
mval <- cov.mve(xcen)
}
npts = 1
if (is.matrix(pts))
npts = nrow(pts)
nval <- matrix(NA, ncol = J, nrow = npts)
icl <- 0 - pval + 1
icu <- 0
for (j in 1:J) {
icl <- icl + pval
icu <- icu + pval
for (i in 1:nrow(pts)) {
if (is.matrix(x) && is.matrix(y)) {
nval[i, j] <- length(y[near3d(x[, icl:icu], pts[i,
], fr, mval), j])
}
if (is.matrix(x) && is.list(y)) {
tempy <- y[[j]]
nval[i, j] <- length(tempy[near3d(x[, icl:icu],
pts[i, ], fr, mval)])
}
if (is.list(x) && is.matrix(y)) {
xm <- as.matrix(x[[j]])
nval[i, j] <- length(y[near3d(xm, pts[i, ], fr,
mval), j])
}
if (is.list(x) && is.list(y)) {
tempy <- y[[j]]
xm <- as.matrix(x[[j]])
nval[i, j] <- length(tempy[near3d(xm, pts[i,
], fr, mval)])
}
}
}
flag <- rep(T, nrow(pts))
for (i in 1:npts) {
if (min(nval[i, ]) < nmin)
flag[i] <- F
}
nflag <- F
if (sum(flag) == 0) {
print("Warning: No design points found with large enough sample size")
nflag <- T
}
flag = as.logical(flag)
if (!nflag) {
pts <- pts[flag, ]
nval <- nval[flag, ]
if (!is.matrix(pts))
pts <- t(as.matrix(pts))
output <- matrix(NA, nrow = nrow(pts), ncol = 3)
dimnames(output) <- list(NULL, c("point", "test.stat",
"p-value"))
if (op == 3 || op == 4)
output <- list()
}
for (i in 1:nrow(pts)) {
if (op == 1 || op == 2)
output[i, 1] <- i
icl <- 0 - pval + 1
icu <- 0
yval <- list()
for (j in 1:J) {
icl <- icl + pval
icu <- icu + pval
if (is.matrix(x) && is.matrix(y)) {
yval[[j]] <- y[near3d(x[, icl:icu], pts[i, ],
fr, mval), j]
}
if (is.matrix(x) && is.list(y)) {
tempy <- y[[j]]
yval[[j]] <- tempy[near3d(x[, icl:icu], pts[i,
], fr, mval)]
}
if (is.list(x) && is.matrix(y)) {
yval[[j]] <- y[near3d(x[[j]], pts[i, ], fr, mval),
j]
}
if (is.list(x) && is.list(y)) {
tempy <- y[[j]]
yval[[j]] <- tempy[near3d(x[[j]], pts[i, ], fr,
mval)]
}
}
if (op == 1)
temp <- t1way(yval, tr = tr)
if (op == 2) {
print("WARNING: NOT RECOMMENDED FOR DISCRETE DATA WITH TIES")
print("RECOMMENDATION: Set the argument op=4")
temp <- med1way(yval, SEED = SEED, pr = FALSE)
}
if (op == 1 || op == 2) {
conout = NULL
output[i, 3] <- temp$p.value
output[i, 2] <- temp$TEST
}
if (op == 3) {
output[[i]] = linconpb(yval, alpha = alpha, SEED = SEED,
con = con, bhop = bhop, tr = tr, nboot = nboot)
}
if (op == 4) {
output[[i]] <- medpb(yval, alpha = alpha, SEED = SEED,
con = con, bhop = bhop, nboot = nboot)
}
}
if (nflag)
output <- NULL
if (op == 1 || op == 2)
tempout = output
if (op == 3 || op == 4) {
tempout = list()
conout = list()
for (j in 1:length(output)) tempout[[j]] = output[[j]]$output
for (j in 1:length(output)) conout[[j]] = output[[j]]$con
}
list(points.chosen = pts, sample.sizes = nval, point = tempout,
contrast.coef = conout[[1]])
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.